
XMP SPECIFICATION PART 3
STORAGE IN FILES

Copyright © 2008 Adobe Systems Incorporated. All rights reserved.

Extensible Metadata Platform (XMP) Specification: Part 3, Storage in Files

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication
(whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of Adobe Systems Incorporated.

Adobe, the Adobe logo, Acrobat, Acrobat Distiller, Flash, FrameMaker, InDesign, Illustrator, Photoshop, PostScript, and
XMP are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other
countries.

MS-DOS, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. Apple, Macintosh, Mac OS and QuickTime are trademarks of Apple Computer, Inc.,
registered in the United States and other countries. UNIX is a trademark in the United States and other countries,
licensed exclusively through X/Open Company, Ltd. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to this
publication, and expressly disclaims any and all warranties of merchantability, fitness for particular purposes, and
noninfringement of third party rights.

 3

Contents

Preface . 6
About this document . 6

How this document is organized . 6
Conventions used in this document . 7

Where to go for more information . 7

1 Introduction . 8
Embedding metadata in files . 8

External storage of metadata . 8

Native metadata . 9

2 XMP Packets . 10
The XMP packet format . 10

Header . 11
XMP data . 12
Padding . 12
Trailer . 12

Scanning files for XMP packets . 13
Scanning hints . 13

3 Embedding XMP Metadata in Application Files . 15
Image formats . 15

DNG (Digital Negative) . 16
GIF (Graphic Interchange Format) . 16
JPEG . 18
JPEG 2000 . 21
PNG (Portable Network Graphics) . 22
TIFF (Tagged Image File Format) . 23

Dynamic media formats . 26
ASF (WMA, WMV) . 26
AVI . 28
FLV (Flash Video) . 29
MOV (QuickTime) . 30
MP3 . 31
MPEG-2 . 31
MPEG-4 . 31
SWF (Flash) . 32
WAV . 33

Video package formats . 33
AVCHD . 34
P2 . 34
Sony HDV (High Definition Video) . 35

Contents 4

XDCAM EX . 36
XDCAM FAM . 36
XDCAM SAM . 37

Adobe application formats . 37
AI (Adobe Illustrator) . 38
INDD, INDT (Adobe InDesign) . 38
PSD (Adobe Photoshop) . 42

Markup formats . 44
HTML . 44
XML . 45

Document formats . 45
PDF . 45
PS, EPS (PostScript and Encapsulated PostScript) . 46
UCF (Universal Container Format) . 53

4 Handling Native Metadata . 55
Reconciling metadata in different formats . 55

Text encodings in import and export . 55
Native metadata export policy . 56
Native metadata import policy . 56

Native metadata in PDF files . 57
User-defined keys . 58
Resolving metadata conflicts . 58

Native metadata in dynamic media formats . 59
Native metadata in ASF (WMA, WMV) . 59
Native metadata in AVI . 60
Native metadata in MP3 . 60
Native metadata in MPEG-4 . 61
Native metadata in WAV . 62

Native metadata in digital photography formats . 62
Reconciliation issues . 64
Encoding of text in metadata . 64

5 Digital Photography Native Metadata . 66
Metadata storage in native formats . 66

TIFF metadata . 66
Exif metadata . 66
Photoshop image resources . 67
IPTC (IIM) metadata . 68

Reconciling metadata properties . 70
Photoshop image resources for metadata . 70
IPTC DataSets for metadata . 71
TIFF and Exif tags for metadata . 73

Metadata storage . 81
Storage by metadata form . 81
Metadata storage in JPEG files . 82
Metadata storage in Photoshop files . 83
Metadata storage in TIFF files . 83

Contents 5

Metadata storage in Mac OS file resources . 85

 6

Preface

This document set provides a complete specification for the Extensible Metadata Platform (XMP), which
provides a standard format for the creation, processing, and interchange of metadata, for a wide variety of
applications.

The specification has three parts:

➤ Part 1, Data and Serialization Model, covers the basic metadata representation model that is the
foundation of the XMP standard format. The Data Model prescribes how XMP metadata can be
organized; it is independent of file format or specific usage. The Serialization Model prescribes how
the Data Model is represented in XML, specifically RDF.

This document also provides details needed to implement a metadata manipulation system such as
the XMP Toolkit (which is available from Adobe).

➤ Part 2, Standard Schemas, provides detailed property lists and descriptions for standard XMP metadata
schemas; these include general-purpose schemas such as Dublin Core, and special-purpose schemas
for Adobe applications such as Photoshop. It also provides information on extending existing schemas
and creating new schemas.

➤ Part 3, Storage in Files, provides information about how serialized XMP metadata is packaged into XMP
packets and embedded in different file formats. It includes information about how XMP relates to and
incorporates other metadata formats, and how to reconcile values that are represented in multiple
metadata formats.

About this document
This document, XMP Specification Part 3, Storage in Files, describes how XMP metadata is embedded within
various file formats. This includes information about the reconciliation of XMP metadata with other forms
of metadata, referred to as native (or sometimes legacy) metadata.

The intended audience of this document are developers writing file I/O code, users who need to
understand the relationship between XMP and native metadata, or others requiring detailed knowledge
of file content.

How this document is organized

This document has the following sections:

➤ Chapter 1, “Introduction,” provides an overview of the issues and problems associated with storing
metadata in or with different file formats. It includes an introduction to the subject of native metadata
formats, and a discussion of external metadata storage.

➤ Chapter 2, “XMP Packets,” describes the format of the XMP packet, which wraps serialized XMP for
storage in files.

➤ Chapter 3, “Embedding XMP Metadata in Application Files,” provides basic information about how
XMP packets are embedded in various file formats.

http://www.adobe.com/products/xmp/

Preface Where to go for more information 7

➤ Chapter 4, “Handling Native Metadata,” explains general policies of how to reconcile metadata values
among XMP and native metadata formats. It provides details of native metadata for simpler cases, and
introduces the complexities of native metadata for the digital-photography formats (JPEG, TIFF, and
PSD).

➤ Chapter 5, “Digital Photography Native Metadata,” provides details of metadata formats used in the
digital-photography formats (TIFF/Exif, IPTC, and PSIR), and specifics of how properties in those
formats map to XMP properties.

Conventions used in this document

The following type styles are used for specific types of text:

Where to go for more information
See these sites for external specifications mentioned in this document:

Typeface Style Used for:

Monospaced bold XMP property names. For example, xmp:CreationDate

Monospaced Regular XML code and other literal values, such as value types and names in
other languages or formats

XMP Specification http://www.adobe.com/devnet/xmp/

Photoshop SDK http://www.adobe.com/devnet/photoshop/

TIFF Specification http://partners.adobe.com/public/developer/tiff/index.html

JPEG Specification http://www.w3.org/Graphics/JPEG/itu-t81.pdf

JFIF Specification http://www.w3.org/Graphics/JPEG/jfif3.pdf

Exif Specification http://www.exif.org/Exif2-2.pdf

IPTC Specification http://www.iptc.org/IPTC4XMP/

Unicode http://www.unicode.org/

http://www.adobe.com/devnet/xmp/
http://www.adobe.com/devnet/photoshop/
http://partners.adobe.com/public/developer/tiff/index.html
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://www.w3.org/Graphics/JPEG/jfif3.pdf
http://www.exif.org/Exif2-2.pdf
http://www.iptc.org/download/download.php?fn=IIMV4.1.pdf
http://www.iptc.org/download/public/IPTCCore-Full.zip
http://www.iptc.org/IPTC4XMP/
http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/

 8

1 Introduction

This document discusses how serialized XMP metadata is packaged and stored with the files it describes. It
includes information about how XMP relates to and incorporates other metadata formats, and how to
reconcile values that are represented in multiple metadata formats.

This chapter provides a basic overview of the concepts that are important to XMP storage and retrieval:

➤ Generally, XMP metadata is embedded in the file which the metadata describes; see “Embedding
metadata in files” on page 8. The details of how it is embedded vary according to the file format, and
are discussed in later chapters.

➤ It is occasionally appropriate to store metadata separately from the file it describes; this is discussed
briefly in “External storage of metadata” on page 8.

➤ Any application that uses or modifies XMP metadata must be aware of native metadata formats, in
order to detect them, preserve them, and reconcile any changes to values among all formats; see
“Native metadata” on page 9.

Embedding metadata in files
XMP metadata is serialized into XML, specifically RFD, for storage in files. The serialized data is known as an
XMP packet. The structure of the XMP packet is discussed in Chapter 2, “XMP Packets.”

The XMP packet is completely self-contained and independent of any particular file format. Most file
formats predate XMP, and do not have built-in specifications for how to include it. However, XMP can be
placed into a file of any format that has a well-defined extension mechanism; that is, a way for developers
to customize files for new uses.

File format specifications offer extension mechanisms as a portion of format-specific data that surrounds a
chunk of user-defined custom data. In the case of XMP, the XMP packet is the custom data. The
surrounding data, as defined by the format specification, identifies the extension’s boundaries and type.

The parameters for embedding custom data vary with different file formats. Chapter 3, “Embedding XMP
Metadata in Application Files,” provides embedding details for a variety of file formats.

External storage of metadata
It is recommended that XMP metadata be embedded in the file that the metadata describes. There are
cases where this is not appropriate or possible, such as database storage models, extremes of file size, or
due to format and access issues. Small content intended to be frequently transmitted over the Internet
might not tolerate the overhead of embedded metadata. Archival systems for video and audio might not
have any means to represent the metadata. Some high-end digital cameras have a proprietary,
non-extensible file format for “raw” image data and typically store Exif metadata as a separate file.

If metadata is stored separately from content, there is a risk that the metadata can be lost. The question
arises of how to associate the metadata with the file containing the content. Applications should:

➤ Write the external file as a complete well-formed XML document, including the leading XML
declaration.

CHAPTER 1: Introduction Native metadata 9

➤ The file extension should be .xmp. For Mac OS, optionally set the file’s type to 'TEXT'.

➤ If a MIME type is needed, use application/rdf+xml.

➤ Write external metadata as though it were embedded and then had the XMP packets extracted and
catenated by a postprocessor.

➤ If possible, place the values of the xmpMM:DocumentID, xmpMM:InstanceID, or other appropriate
properties within the file the XMP describes, so that format-aware applications can make sure they
have the right metadata.

For applications that need to find external XMP files, look in the same directory for a file with the same
name as the main document but with an .xmp extension. (This is called a sidecar XMP file.)

Native metadata
Files in many formats can contain metadata in other, previously-defined or native formats. Still image
formats, for example, frequently contain IPTC and TIFF/Exif metadata. When a file is imported, it can
contain metadata in one or more of these native formats. Similarly, when a file is exported, it may be read
by a device or application that is expecting metadata in native formats, and may or may not support the
XMP format. The information represented overlaps to a great degree, and values that are present in any
format should be reflected in all others.

An application that supports XMP must read metadata values from the native formats, and represent it
correctly in the XMP metadata. When modifying XMP metadata, an application is responsible for correctly
reflecting changes in any other metadata formats that are present. A file that has been manipulated by an
application that supports XMP might later be opened in an application that relies on another metadata
format, and any changes that have been made to the XMP metadata must be properly represented.

Users of the XMP Toolkit, which handles most native metadata reconciliation, should still be aware of the
issues in order to recognize potential problems to look for when testing with legacy application or file
versions.

➤ For general issues and policy on metadata reconciliation, see Chapter 4, “Handling Native Metadata.

➤ For an in-depth discussion of complex issues pertaining to still image formats (JPEG, TIFF, and PSD),
see Chapter 5, “Digital Photography Native Metadata.

 10

2 XMP Packets

The XMP packet wrapper can enable the use of embedded XMP by software that does not understand the
format of the file. The packet wrapper is not the sole aspect of embedding XMP in a file. The entire XMP
packet must still be placed in the file as an appropriate component of the file’s structure.

XMP packets:

➤ may be embedded in a wide variety of binary and text formats, including native XML files;

➤ are delimited by easy-to-scan markers which are XML syntax-compatible (as is the entire packet) to
allow transmission to an XML parser without additional filtering;

➤ deal with arbitrary positioning within a byte stream (so as not to rely on machine word boundaries,
and so on);

➤ enable in-place editing of metadata (if the metadata size does not exceed the packet boundaries);

➤ allow multiple packets to be embedded in a single data file.

Chapter 3, “Embedding XMP Metadata in Application Files gives information on how XMP packets are
embedded in specific file formats. Applications may also scan files for XMP packets without knowledge of
the file format itself, although this should be regarded as a last resort (see “Scanning files for XMP packets”
on page 13).

The XMP packet format
The packet wrapper, which consists of a header, padding, and trailer wrapped around serialized XMP) is
formally optional; that is, a file that contains only the serialized XMP is legal. The packet wrapper, if used,
allows byte-oriented packet scanning and in-place editing of the XMP.

Some file formats or use cases might forbid the packet wrapper; for instance, in cases where minimal size is
paramount. It can also happen in cases where the XMP might not be contiguous, and thus byte-oriented
packet scanning must be prevented.

The following figure shows a schematic of an XMP packet. It contains a header, XML data, padding, and a
trailer.

Here is an outline of an XMP packet, showing the text of the header and trailer:

<?xpacket begin="■" id="W5M0MpCehiHzreSzNTczkc9d"?>
... the serialized XMP as described above: ...

Header

Serialized XMP

Padding

Trailer

CHAPTER 2: XMP Packets The XMP packet format 11

<x:xmpmeta xmlns:x="adobe:ns:meta/">
<rdf:RDF xmlns:rdf= ...>

...
</rdf:RDF>

</x:xmpmeta>

... XML whitespace as padding ...
<?xpacket end="w"?>

In this example, ‘■’ represents the Unicode “zero width non-breaking space character” (U+FEFF) used as a
byte-order marker.

An XMP packet must conform to the well-formedness requirements of the XML specification, except for
the lack of an XML declaration at its start. Different packets in a file can be in different character encodings,
and packets must not nest.

The following sections describe the parts of this example packet.

Header

The header is an XML processing instruction of the form:

<?xpacket ... ?>

The processing instruction contains information about the packet in the form of XML attributes. There are
two required attributes: begin and id, in that order. Other attributes can follow in any order; unrecognized
attributes should be ignored. Attributes must be separated by exactly one ASCII space (U+0020) character.

NOTE: The astute reader might note that XML processing instructions do not actually contain
“attributes”; formally, they have an undifferentiated text body. The term attribute is used here
colloquially to denote the general syntax of the xpacket processing instruction’s body.

Attribute: begin

This required attribute indicates the beginning of a new packet. Its value is the Unicode zero-width
non-breaking space character U+FEFF, in the appropriate encoding (UTF-8, UTF-16, or UTF-32). It serves as
a byte-order marker, where the character is written in the natural order of the application (consistent with
the byte order of the XML data encoding).

For backward compatibility with earlier versions of the XMP packet specification, the value of this attribute
can be the empty string, indicating UTF-8 encoding.

“Scanning files for XMP packets” on page 13 describes how an XMP packet processor should read a single
byte at a time until it has successfully determined the byte order and encoding.

Attribute: id

The required id attribute must follow begin. For all packets defined by this version of the syntax, the value
of id is the following string:

W5M0MpCehiHzreSzNTczkc9d

CHAPTER 2: XMP Packets The XMP packet format 12

Attribute: bytes

This attribute is deprecated.

The optional bytes attribute specifies the total length of the packet in bytes, which was intended to allow
faster scanning of XMP packets. It was of minimal actual value, and would not work properly in text files.

Attribute: encoding

This attribute is deprecated.

The optional encoding attribute is identical to the encoding attribute in the XML declaration (see
productions [23] and [80] in the XML specification). It was intended to specify the character encoding of
the packet, but is redundant with the information from the begin attribute.

XMP data

The bytes of the XMP data are placed here. Their encoding must match the encoding implied by the
header’s begin attribute. The structure of the data is described in XMP Specification Part 1, Data and
Serialization Models.

The XMP data should not contain an XML declaration. The XML specification requires that the XML
declaration be “the first thing in the entity”; this is not the case for an embedded XMP packet.

Padding

It is recommended that applications place 2 KB to 4 KB of padding within the packet. This allows the XMP
to be edited in place, and expanded if necessary, without overwriting existing application data. The
padding must be XML-compatible whitespace; the recommended practice is to use the ASCII space
character (U+0020) in the appropriate encoding, with a newline about every 100 characters.

Trailer

This required processing instruction indicates the end of the XMP packet.

<?xpacket end='w'?>

Attribute: end

The end attribute is required, and must be the first attribute. Other unrecognized attributes can follow, but
should be ignored. Attributes must be separated by exactly one ASCII space (U+0020) character.

The value of end indicates whether applications that do not understand the containing file format are
allowed to update the XMP packet:

➤ The value r means the packet is “read-only” and must not be updated in place. This would be used for
example if a file contained an overall checksum that included the embedded XMP.

The use of the value r does restrict the behavior of applications that understand the file format and
are capable of properly rewriting the file.

http://www.w3.org/TR/REC-xml

CHAPTER 2: XMP Packets Scanning files for XMP packets 13

➤ The value w means the packet can be updated in place, if there is enough space. The overall length of
the packet must not be changed; padding should be adjusted accordingly. The original encoding and
byte order must be preserved, to avoid breaking text files containing XMP or violating other
constraints of the original application.

Scanning files for XMP packets
Knowledge of individual file formats provides the best way for an application to get access to XMP packets.
See Chapter 3, “Embedding XMP Metadata in Application Files for detailed information on how XMP data
is stored in specific file formats.

It is always best to use format-aware file parsing when possible. Lacking this information, applications can
find XMP packets by scanning the file. Byte scanning for XMP packets is not recommended; it is slow and
unreliable, and should be used only if absolutely necessary. This section explains how files can, if
necessary, be scanned for XMP packets, and why this should be done with extreme caution.

Without knowledge of the file format, simply locating packets is not sufficient. The following are some
possible drawbacks:

➤ It may not be possible to determine which resource the XMP is associated with. If a JPEG image with
XMP is placed in a page layout file of an application that is unaware of XMP, that file has one XMP
packet that refers to just the image, not the entire layout.

➤ When there is more than one XMP packet in a file, it may be impossible to determine which is the
“main” XMP, and what the overall resource containment hierarchy is in a compound document.

➤ Some packets could be obsolete. For example, PDF files allow incremental saves. Therefore, when
changes are made to the document, there might be multiple packets, only one of which reflects the
current state of the file.

Scanning hints

A file should be scanned byte-by-byte until a valid header is found. First, the scanner should look for a byte
pattern that represents the text

<?xpacket begin=

which will be one of the following byte patterns:

➤ 8-bit encoding (UTF-8):

0x3C 0x3F 0x78 0x70 0x61 0x63 0x6B
0x65 0x74 0x20 0x62 0x65 0x67 0x69 0x6E 0x3D

➤ 16-bit encoding (UCS-2, UTF-16): (either big- or little-endian order)

0x3C 0x00 0x3F 0x00 0x78 0x00 0x70 0x00 0x61 0x00
0x63 0x00 0x6B 0x00 0x65 0x00 0x74 0x00 0x20 0x00 0x62 0x00
0x65 0x00 0x67 0x00 0x69 0x00 0x6E 0x00 0x3D [0x00]

➤ 32-bit encoding (UCS-4): the pattern is similar to the UCS-2 pattern above, except with three 0x00
bytes for every one in the UCS-2 version.

For 16-bit and 32-bit encodings, a scanner cannot be sure whether the 0x00 values are in the high- or
low-order portion of the character until it reads the byte-order mark (the value of the begin attribute). As

CHAPTER 2: XMP Packets Scanning files for XMP packets 14

you can see from the pattern, it starts with the first non-zero value, regardless of byte order, which means
that there might or might not be a terminal 0x00 value.

A scanner can choose to simply skip 0x00 values and search for the 8-bit pattern. Once the byte order is
established, the scanner should switch to consuming characters rather than bytes.

After finding a matching byte pattern, the scanner must consume a quote character, which can be either
the single quote (apostrophe) (U+0027) or double quote (U+0022) character.

Note that individual attribute values in the processing instruction can have either single or double quotes.
The following header is well-formed:

xpacket begin="i>>¿" id='W5M0MpCehiHzreSzNTczkc9d'?>

The scanner is now ready to read the value of the begin attribute, followed by the closing quote character:

If the attribute has no value (that is, the value is the empty string), the encoding is UTF-8.

The scanner now has enough information to process the rest of the header in the appropriate character
encoding.

UTF-8 0xEF 0xBB 0xBF

UTF-16, big-endian 0xFE 0xFF

UTF-16, little-endian 0xFF 0xFE

UTF-32, big-endian 0x00 0x00 0xFE 0xFF

UTF-32, little-endian 0xFF 0xFE 0x00 0x00

 15

3 Embedding XMP Metadata in Application Files

This chapter describes how XMP metadata in XMP packets is embedded in a variety of file formats.
Document interchange is best achieved by applications that understand how XMP is embedded. These
descriptions assume that the reader has a working knowledge of the referenced file formats.

The formats are listed here alphabetically within general categories:

Image formats
➤ DNG (Digital Negative)

➤ GIF (Graphic Interchange Format)

➤ JPEG

“Image formats” on page 15 DNG (Digital Negative)
GIF (Graphic Interchange Format)
JPEG
JPEG 2000
PNG (Portable Network Graphics)
TIFF (Tagged Image File Format)

“Dynamic media formats” on page 26 ASF (WMA, WMV)
AVI
FLV (Flash Video)
MOV (QuickTime)
MP3
MPEG-2
MPEG-4
SWF (Flash)
WAV

“Video package formats” on page 33 AVCHD
P2
Sony HDV (High Definition Video)
XDCAM EX
XDCAM FAM
XDCAM SAM

“Adobe application formats” on page 37 AI (Adobe Illustrator)
INDD, INDT (Adobe InDesign)
PSD (Adobe Photoshop)

“Markup formats” on page 44 HTML
XML

“Document formats” on page 45 PDF
PS, EPS (PostScript and Encapsulated PostScript)
UCF (Universal Container Format)

CHAPTER 3: Embedding XMP Metadata in Application Files Image formats 16

➤ JPEG 2000

➤ PNG (Portable Network Graphics)

➤ TIFF (Tagged Image File Format)

DNG (Digital Negative)

DNG is a publicly documented, standardized format created by Adobe for storage of raw image data as
captured by digital cameras. It was created as an alternative to the more than 400 wildly varying formats
all called "camera raw;" see “Camera raw formats” on page 16.

DNG files can embed XMP metadata; they are, in fact, well-behaved TIFF. They can be processed by the
Adobe DNG SDK, by the Adobe Camera Raw (ACR) SDK, or by the TIFF handler in the XMP Toolkit. The
primary difference between the Adobe DNG/ACR handlers and the XMP Toolkit TIFF handler is that the
TIFF handler does not interpret the Exif MakerNote tag.

Metadata can be embedded in DNG in the following ways:

➤ Using TIFF or Exif metadata tags

➤ Using the IPTC metadata tag (33723)

➤ Using the XMP metadata tag (700)

Note that TIFF and Exif use nearly the same metadata tag set, but TIFF stores the tags in IFD 0, while Exif
store the tags in a separate IFD. Either location is allowed by DNG, but the Exif location is preferred. See
“TIFF and Exif tags for metadata” on page 73.

Reference For further information on this file format, see:

http://www.adobe.com/products/dng/

Camera raw formats

Many raw formats look like TIFF, but do not behave as expected in various ways. Do not attempt to process
camera raw files with generic TIFF software. Similarly, you should not pass a raw-format file directly to XMP
Toolkit file handlers (XMPFiles), but should use the Adobe Camera Raw (ACR) SDK instead.

When writing your own metadata handler for camera raw files, it can be difficult to distinguish a possible
camera raw file from a generic TIFF file. A pragmatic partial solution is to filter by file extension. Known
camera raw extensions include:

GIF (Graphic Interchange Format)

In a GIF 89a file, an XMP packet is in an Application Extension (see the following figure). Its Application
Identifier is 'XMP Data' and the Application Authenticator is 'XMP'. The Application Data consists of the

.ARW .CR2 .CRW .DCR .ERF .FFF

.MEF .MFW .MOS .MRW .NEF .ORF

.PEF .RAW .SR2 .SRF .STI .X3F

http://www.adobe.com/products/dng/

CHAPTER 3: Embedding XMP Metadata in Application Files Image formats 17

XMP packet, which must be encoded as UTF-8, followed by a 258-byte “magic” trailer, whose values are
0x01, 0xFF, 0xFE, 0xFD0x03, 0x02, 0x01, 0x00, 0x00. The final byte is the Block Terminator.

NOTE: The "Application Extension" mechanism used for XMP was added in the 89a revision of GIF; the GIF
87a standard does not support it. XMP should not be placed into GIF 87a files.

The XMP must be UTF-8-encoded, for the following reasons. GIF actually treats the Application Data as a
series of GIF data sub-blocks. The first byte of each sub-block is the length of the sub-block’s content, not
counting the first byte itself. To consume the Application Data, a length byte is read. If it is non-zero, that
many bytes of data are read, followed by the next length byte. The series ends when a zero length byte is
encountered.

When XMP is encoded as UTF-8, there are no zero bytes in the XMP packet. Therefore, software that is
unaware of XMP views packet data bytes as sub-block lengths, and follows them through the packet
accordingly, eventually arriving somewhere in the magic trailer. The trailer is arranged so whichever byte is
encountered there will cause a skip to the Block Terminator at the end.

The following figure shows how XMP in embedded in the GIF file format:

Reference For reference information, see the GIF 89a specification at:

http://www.w3.org/Graphics/GIF/spec-gif89a.txt

0 0x21

1 0xFF

0x0B

2

3

0

1

6

7

4

5

10

11

8

9

‘X’

‘M’

‘P’

‘ ’

‘D’

‘a’

‘t’

‘a’

‘X’

‘P’

‘M’

0x58

0x4D

0x50

0x20

0x44

0x61

0x74

0x61

0x58

0x50

0x4D

0x00

7 6 5 4 3 2 1 0 Field Name Type
Extension Introducer Byte

Extension Label Byte

Block Size Byte

Application Identifier 8 Bytes

Application Authentication 3 Bytes

XMP packet, Byte

Code

must be encoded as UTF-8

0x01

0xFF

0xFE

 0x00

0x01

...

“Magic trailer”

Block Terminator Byte

<XMP packet>

258 Bytes

http://www.w3.org/Graphics/GIF/spec-gif89a.txt

CHAPTER 3: Embedding XMP Metadata in Application Files Image formats 18

JPEG

The JPEG (Joint Photographic Experts Group) specification concerns itself almost entirely with the image
compression algorithm, and has very little to say about the remainder of the file format. It specifies a
sequence of 2-byte markers, interspersed among data. Each marker defines the interpretation of data that
follows it. According to the JPEG standard, any number of marker segments may appear in any order; the
JFIF and Exif standards built upon JPEG define some ordering restrictions.

The first byte of each marker is 0xFF, the second byte is a type identifier the range 0x01..0xFE; the marker is
followed by data which extends to the next marker. The pairs 0xFF00 and 0xFFFF are not markers. A
marker can be preceded by any number of 0xFF fill bytes. Restart markers can appear within the
compressed image stream: any 0xFF byte in the compressed image has a 0x00 byte inserted after it so that
it does not appear to be a marker.

The marker types FFE0-FFEF are generally used for application data, named APPn. By convention, an APPn
marker begins with a string identifying the usage, called a namespace or signature string. An APP1 marker
identifies Exif and TIFF metadata; an APP13 marker designates a Photoshop Image Resource (PSIR) that
contains IPTC metadata; another APP1 marker designates the location of the XMP packet.

Both JFIF and Exif specify a particular APPn marker segment as immediately following the SOI marker.
Neither of the JFIF and Exif specifications references the other, so there is no declared standard for mixing
them. Readers should be prepared to encounter files that contain an Exif APP1 marker segment following
the JFIF and JFXX APP0 marker segments.

After the type, the marker contains a length value and the identifying namespace string. The length value
is 2 (the length field itself) plus the length of the namespace field, plus the length of the data in bytes.
Metadata markers share the convention of having NULL-terminated namespace strings:

Marker Signature, including NULLs Usage

APP1 "Exif\0\0” (2 NULLs) TIFF and Exif metadata

APP1 "http://ns.adobe.com/xap/1.0/\0” XMP

APP13 "Photoshop 3.0\0” Photoshop image resources, including
IPTC metadata, but not including XMP or
Exif metadata

Markers

Image data

APP1: Exif/TIFF

APP13: PSIR/IPTC

APP1: XMP

(other markers)

(other markers)

http://ns.adobe.com/xap/1.0/%5C0%E2%80%9DXMPAPP13
http://ns.adobe.com/xap/1.0/%5C0%E2%80%9DXMPAPP13

CHAPTER 3: Embedding XMP Metadata in Application Files Image formats 19

The following table shows the entry format for the XMP section:

The JPEG standard does not prescribe ordering among APPn segments, but some related standards do. For
example, JIFF requires that JFIF and JFXX APP0 segments be immediately after the SOI. Also, some
applications improperly assume that the segments are in a particular order. For compatibility, it is best to
put any JFIF APP0 first, the Exif APP1 next, the XMP APP1 next, the PSIR APP13 next, followed by all other
marker segments.

JPEG is inherently a sequential file structure; however, nothing prevents the content of an APPn marker
segment from having its own internal formatting. Exif, for example, embeds the linked TIFF data structure
as the content of an APP1 marker segment.

Extended XMP in JPEG

Following the normal rules for JPEG sections, the header plus the following data can be at most 65535
bytes long. If the XMP packet is not split across multiple APP1 sections, the size of the XMP packet can be
at most 65502 bytes. It is unusual for XMP to exceed this size; typically, it is around 2K.

If the serialized XMP packet becomes larger than the 64K limit, you can divide it into a main portion
(StandardXMP) and an extended portion (ExtendedXMP), and store it in multiple JPEG marker segment. A
reader must check for the existence of ExtendedXMP, and if it is present, integrate the data with the main
XMP. Each portion (standard and extended) is a fully formed XMP metadata tree, although only the
standard portion contains a complete packet wrapper. If the data is more than twice the 64K limit, the
extended portion can also be split and stored in multiple marker segments; in this case, the split portions
are not fully formed metadata trees.

When ExtendedXMP is required, the metadata must be split according to some algorithm that assigns
more important data to the main portion, and less important data to the extended portions or portions.
The definition of importance is up to the application; see “Partitioning XMP” on page 20.

The main portion of the metadata tree must be serialized and written as the standard XMP packet, in the
APP1 marker segment described above, called StandardXMP. The extended portion must be serialized
without a packet wrapper, and written as a series of APP1 marker segments, collectively called the
ExtendedXMP.

When written into the JPEG file, the serialized text for the ExtendedXMP can be further split as necessary
into a series of roughly 65400 byte chunks. This number is not fixed; readers must tolerate other sizes. The
upper limit on the ExtendedXMP chunk size is 65458 (65535 less the additional description bytes,
2+35+32+4+4). This second 64K split is a simple separation of the XML text into data chunks, without
regard to XML tokens or even UTF-8 characters.

Byte offset,
length Field value Field name Comments

0, 2 bytes 0xFFE1 APP1 APP1 marker identifies metadata section.

2, 2 bytes 2 + 29 + length of XMP packet Lp Size in bytes of this count plus the
following two portions.

4, 29 bytes Null-terminated ASCII string
without quotation marks

namespace XMP namespace URI, used as unique ID:

http://ns.adobe.com/xap/1.0/

33, < 65503 XMP packet Must be encoded as UTF-8.

http://ns.adobe.com/xap/1.0/

CHAPTER 3: Embedding XMP Metadata in Application Files Image formats 20

Each chunk is written into the JPEG file within a separate APP1 marker segment. Each ExtendedXMP
marker segment contains:

➤ A null-terminated signature string of "http://ns.adobe.com/xmp/extension/".

➤ A 128-bit GUID stored as a 32-byte ASCII hex string, capital A-F, no null termination. The GUID is a
128-bit MD5 digest of the full ExtendedXMP serialization.

➤ The full length of the ExtendedXMP serialization as a 32-bit unsigned integer

➤ The offset of this portion as a 32-bit unsigned integer.

➤ The portion of the ExtendedXMP

The GUID is also stored in the StandardXMP as the value of the xmpNote:HasExtendedXMP property. This
allows detection of mismatched or modified ExtendedXMP. A reader must only incorporate ExtendedXMP
blocks whose GUID matches the value of xmpNote:HasExtendedXMP. The URI for the xmpNote: namespace
is "http://ns.adobe.com/xmp/note/".

When partitioning the XMP and determining the remaining size of the StandardXMP, be sure to first add
the xmpNote:HasExtendedXMP property to the StandardXMP with an initial 32-byte dummy value. This
ensures accurate values for the size of the StandardXMP serialization, which must contain the
xmpNote:HasExtendedXMP property.

A JPEG writer should write the ExtendedXMP marker segments in order, immediately following the
StandardXMP. However, the JPEG standard does not require preservation of marker segment order. A
robust JPEG reader should tolerate the marker segments in any order.

The offset field of the marker segment is the offset of this chunk of the ExtendedXMP serialization within
the full ExtendedXMP serialization. The first chunk has offset 0, the second chunk has an offset equal to the
first chunk’s size, and so on. The offsets allow proper reconstruction of the ExtendedXMP serialization even
if the APP1 marker segments are reordered.

A JPEG reader must recompose the StandardXMP and ExtendedXMP into a single data model tree
containing all of the XMP for the JPEG file, and remove the xmpNote:HasExtendedXMP property.

Partitioning XMP

The specification does not mandate any particular procedure for separating XMP into standard and
extended portions. However, it is a good idea for certain things to be in the first packet, so that older
handlers and implementations that recognize only the first packet will still work. Adobe products follow
these recommendations and guidelines in order to ensure that the most important data fields go into the
first packet:

➤ In order to avoid partitioning when possible, the StandardXMP serialization should be as small as
possible, making full use of RDF shorthand and eliminating all formatting whitespace. If the
StandardXMP is too large, try to reduce or eliminate the packet-padding whitespace.

➤ If it the StandardXMP is still too large, delete any existing xmp:Thumbnails property. (Applications
should avoid use of the xmp:Thumbnails property in JPEG files. The XMP form of the thumbnail is
relatively large, and the Exif form of JPEG has a standard native thumbnail that is already produced by
most or all digital cameras.)

➤ If the StandardXMP packet is still too large, move these items to the extension portion, in order, until
the remaining StandardXMP is small enough:

http://ns.adobe.com/xmp/extension/
http://ns.adobe.com/xmp/note/

CHAPTER 3: Embedding XMP Metadata in Application Files Image formats 21

➣ All properties in the Camera Raw namespace.

➣ The photoshop:History property.

➤ Other top-level properties in order of estimated serialized size, largest first.

Reference For reference information, see:

➤ JPEG File Interchange Format (JFIF) Version 1.02.

➤ The JPEG specification on the W3C JPEG website:

http://www.w3.org/Graphics/JPEG/itu-t81.pdf

➤ ISO/IEC 10918-1 Information technology — Digital Compression and Coding of continuous-tone still
images: requirements and guidelines.

➤ ISO/IEC 10918-4 Information technology — Digital compression and coding of continuous-tone still
images: Registration of JPEG profiles, SPIFF profiles, SPIFF tags, SPIFF color spaces, APPn markers, SPIFF
compression types and Registration Authorities (REGAUT).

This specifies the format of APPn markers and the file interchange format.

NOTE: TIFF, JPEG, and PSD share complex issues of how native metadata formats are stored; see “Native
metadata in digital photography formats” on page 62.

JPEG 2000

JPEG 2000 uses the ISO Base Media File Format. This is the same basic format as MPEG-4, although some
internal details differ. The JPEG 2000 flavor of the file format is ISO/IEC 15444-12, the MPEG-4 flavor is
ISO/IEC 14496-12. The ISO Base Media File Format is a "chunky" file format, similar to QuickTime or RIFF
(AVI and WAV). In this case the chunks are called boxes.

Each box consists of a header followed by data. The structure of the header is:

Offset, length Description

0, 4 bytes 32-bit, unsigned, big-endian value, the size of the box. The size includes both the
header and data portions of the box.

➤ If the size does not fit into 32 bits, this value is 1, and the size value is in the
extended size field.

➤ Value is 0 if the box extends to the end of the file; in this case, no extended size
value is present.

4, 4 bytes 32-bit, unsigned, big-endian value, the type code. Typically defined as 4 ASCII
characters, shown in file order. The standard extension mechanism is the UUID box.
The data portion of a UUID box must begin with a 16-byte unique ID ("uuid").

8, 8 bytes 64-bit, unsigned, big-endian value, the extended size (if needed).

http://www.w3.org/Graphics/JPEG/itu-t81.pdf

CHAPTER 3: Embedding XMP Metadata in Application Files Image formats 22

XMP packets are stored in a UUID box, as shown in the following table:

Reference For reference information, see the JPEG 2000 standard:

http://www.jpeg.org/JPEG2000.html

PNG (Portable Network Graphics)

An XMP packet is embedded in a PNG graphic file by adding a chunk of type iTXt. This chunk is
semantically equivalent to the tEXt and zTXt chunks, but the textual data is in the UTF-8 encoding of the
Unicode character set, instead of Latin-1.

The Chunk Data portion is the XMP packet. The packet must be marked as read-only. XMP software that is
not aware of the file format must not be allowed to change the content of the XMP packet because of the
CRC checksum following the chunk data.

There should be no more than one chunk containing XMP in each PNG file. Encoders are encouraged to
place the chunk at the beginning of the file, but this is not required.

The PNG data format is shown in the following table.

Field value
Field
name

Length
(bytes) Comments

Entire length in bytes (including the
four used for this field)

Length 4 Big-endian unsigned integer

0x75756964 (‘uuid’) Type 4 Big-endian unsigned integer

BE 7A CF CB
97 A9 42 E8
9C 71 99 94
91 E3 AF AC

UUID 16 16-byte binary UUID as defined by ISO/IEC
11578:1996

< XMP packet > DATA Must be encoded as UTF-8

Field Length Comments

Length 4 An unsigned integer representing the number of bytes in the
chunk’s data field (does not include the chunk type code or
the CRC).

Chunk Type 4 "iTXt"

Chunk Data Standard iTXt chunk header plus the XMP packet

Keyword 17 "XML:com.adobe.xmp"

Null separator 1 value = 0x00

Compression flag 1 value = 0x00, specifies uncompressed data

Compression method 1 value = 0x00

Language tag 0 Not used for XMP metadata

http://www.jpeg.org/JPEG2000.html

CHAPTER 3: Embedding XMP Metadata in Application Files Image formats 23

Reference For reference information, see:

http://www.w3.org/TR/REC-png.html

TIFF (Tagged Image File Format)

Tagged Image File Format (abbreviated TIFF or TIF) is a file format for storing images, including
photographs and line art, and also a metadata format. A number of other formats, including DNG for
camera raw data and Exif for metadata, are also well-behaved TIFF. Many camera raw formats, however,
look like TIFF but are not well-behaved and cannot be processed by a TIFF handler.

The overall structure of a TIFF file is relatively simple, an 8 byte header and a chain of Image File Directories
(IFDs). The file header contains:

Each IFD entry starts with a 2-byte identifier, or tag. (The term TIFF field has been used to refer to an IFD
entry or an IFD entry plus the associated value. The term TIFF tag has been used to refer to just the numeric
ID or as a synonym for TIFF field. Here, tag is used for the numeric ID.) The entry then gives the data type
for the value, then either the value itself or a pointer to it.

Null separator 1 value = 0x00

Translated keyword 0 Not used for XMP metadata

Null separator 1 value = 0x00

Text length of
packet

The XMP packet, must be encoded as UTF-8

CRC 4 The Cyclic Redundancy Check, calculated on the preceding
bytes in the chunk, including the chunk type code and chunk
data fields, but not including the length field.

Field Length Comments

Offset, length Description

0, 2 bytes Byte order, "II" (0x4949) for little-endian, "MM" (0x4D4D) for big-endian

2, 2 bytes Identifies file as TIFF with the number 42 in the given byte order: 0x2A00 if
little-endian, 0x002A if big-endian

4, 4bytes Offset of the first (0th) IFD. Each IFD begins with a 2-byte count of directory entries,
followed by a sequence of 12-byte directory entries, followed by a 4 byte offset of the
next IFD. The last IFD must have zero as the offset of the next IFD.

The IFDs can be anywhere in the file (after the 8 byte header), in any order. Each IFD
must be on a 2 byte boundary; that is, it must have an even offset.

Within an IFD, entries must be sorted in ascending tag order.

A TIFF file must have at least one IFD and each IFD must have at least one entry. All
offsets are absolute (from the beginning of the file header), not relative offsets from
some other point within the file.

http://www.w3.org/TR/REC-png.html

CHAPTER 3: Embedding XMP Metadata in Application Files Image formats 24

Each 12-byte IFD entry contains:

Each directory entry represents either an individual metadata property, or a pointer to a block of metadata
in another format. For tags that identify blocks of metadata in other formats, including XMP, the entry
provides a length/offset pair that points to the data block. These tags are:

Offset, length Description

0, 2 bytes The TIFF tag, a numeric identifier. Tag identifiers for individual properties are listed in
the TIFF and Exif specifications, and in Chapter 5, “Digital Photography Native
Metadata.”

2, 2 bytes The value data type. One of:

1, BYTE, An 8-bit unsigned integer
2, ASCII, An 8-bit byte with a 7-bit ASCII character
3, SHORT, A 16-bit unsigned integer
4, LONG, A 32-bit unsigned integer
5, RATIONAL, A pair of LONGs, numerator then denominator
6, SBYTE, An 8-bit signed integer
7, UNDEFINED, An undefined 8-bit byte
8, SSHORT, A 16-bit signed integer
9, SLONG, A 32-bit signed integer
10, SRATIONAL, A pair of SLONGs, numerator then denominator
11, FLOAT, A 4-byte IEEE floating point value
12, DOUBLE, An 8-byte IEEE floating point value

4, 4 bytes The length, which is the number of values; depending on the data type, it is not
necessarily the number of bytes. For the ASCII type, it is the number of characters. This
is the exact number; it does not include any padding for odd lengths.

An ASCII value must have a terminating NULL (0x00) character, which is included in
the count. An ASCII value can have multiple NULL terminated strings; the count is the
total for all of the strings. Individual strings, other than the first, might begin on odd
offsets.

8, 4 bytes The value itself or a pointer to it:

➤ Small values (4 bytes or less) must be placed directly in the IFD entry. If less than 4
bytes, the value is placed in the lower numbered bytes.

➤ For larger values, this is the byte offset that points to the data block. The offset
must be even, but may otherwise point anywhere in the file regardless of IFD or
IFD entry order.

Tag Hex Usage

700 0x2BC XMP packet

33723 0x83BB IPTC dataset

34377 0x8649 Photoshop Image Resources (PSIR) containing non-metadata resources, and
possibly duplicating the IPTC metadata

CHAPTER 3: Embedding XMP Metadata in Application Files Image formats 25

The IFD entry for XMP looks like this:

NOTE: TIFF, JPEG, and PSD share complex issues of how native metadata formats are stored; see “Native
metadata in digital photography formats” on page 62.

Reference Official documentation for the TIFF file format is available from:

http://partners.adobe.com/public/developer/tiff/index.html

For reference information, see the TIFF 6.0 Specification:

http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

34665 0x8769 Exif subsidiary IFD offset

34853 0x8825 GPS subsidiary IFD offset

Byte
offset

Field
value

Field
name Comments

0 700 TAG Tag that identifies the field (decimal value).

2 1 Field
type

The field type is BYTE, which is represented as a value of 1.

4 Count The total byte count of the XMP packet.

8 Value or
Offset

The byte offset of the XMP packet, which must be encoded as UTF-8.

http://partners.adobe.com/public/developer/tiff/index.html
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

CHAPTER 3: Embedding XMP Metadata in Application Files Dynamic media formats 26

Dynamic media formats
Certain video formats have special considerations and are collected separately; see “Video package
formats” on page 33.

➤ ASF (WMA, WMV)

➤ AVI

➤ FLV (Flash Video)

➤ MOV (QuickTime)

➤ MP3

➤ MPEG-2

➤ MPEG-4

➤ SWF (Flash)

➤ WAV

ASF (WMA, WMV)

Advanced Systems Format (formerly Advanced Streaming Format) is Microsoft's proprietary digital
audio/digital video container format, especially meant for streaming media. ASF is part of the Windows
Media framework. The most common filetypes contained within an ASF file are Windows Media Audio
(WMA) and Windows Media Video (WMV). WMA and WMV are very similar.

The file extension of an ASF file indicates what kind of compression is used for the content:

➤ An ASF file that contains audio content compressed with the WMA codec typically uses the .wma
extension.

➤ An ASF file that contains audio content, video content, or both, compressed with WMA and WMV
codecs uses the .wmv extension.

➤ Content that is compressed with any other codec use the generic .asf extension.

NOTE: Software developers must carefully read the licensing terms in the ASF specification. Microsoft
grants royalty-free permission to distribute executable and object code products that implement ASF
support, but explicitly forbids distribution of source code.

Reference The ASF specification is available at:

http://www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx

ASF format

ASF files are logically composed of three types of top-level objects: Header, Data and Index Objects. A
top-level object can contain other objects in its data section.

➤ The Header Object is mandatory and must be at the beginning of every ASF file.

➤ The Data Object is also mandatory and must immediately follow the Header Object.

http://www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx

CHAPTER 3: Embedding XMP Metadata in Application Files Dynamic media formats 27

➤ The Index Objects are optional, when present they must be the last objects in the ASF file.

➤ Other objects can appear between the Data Object and the first Index Object. XMP is embedded as
one of these.

All ASF objects have a similar structure:

➤ A 16-byte GUID

The GUID identifies the purpose of an object. It is unique as a type identifier, not as an instance
identifier; that is, the same conceptual object in different files has the same GUID. The ASF
specification contains tables of standard GUIDs, and applications can create others.

The ASF specification does not define GUIDs in file byte order. The documentation lists them as
though they contained:

➣ A 4-byte little-endian integer

➣ A 2-byte little-endian integer

➣ A 2-byte little-endian integer

➣ A 2-byte big-endian integer

Header Object

File Properties Object

Stream Properties Object

Stream Properties Object

<other header objects>

Data Object

Data Packet 1

. . .

<other objects>

Index Object 1

Simple Index Object 1

. . .

. . .

CHAPTER 3: Embedding XMP Metadata in Application Files Dynamic media formats 28

➣ A 6-byte in-order sequence

Thus, if the documented value of a GUID is 00112233-4455-6677-8899-AABBCCDDEEFF, the file
contains 33221100 55447766 8899AABB CCDDEEFF.

➤ An 8-byte little-endian size

The size includes both the GUID and size itself; that is, 24 plus the data size. The ASF specification does
not say if the size is signed or unsigned. For safety it should be treated as unsigned, with a 63-bit range.

➤ The object's data

There appear to be no uses in ASF of relative offsets between objects, and no uses of absolute offsets of
objects. Index offsets are relative to the appropriate data packet origin. This allows Header and XMP
objects to be inserted, grown, or shrunk with relative ease. Only adjustments to the length of containing
objects are necessary.

The ASF Header Object contains several nested objects that have native metadata fields mapped to XMP:
See details of reconciliation in “Native metadata in ASF (WMA, WMV)” on page 59.

XMP embedded in ASF

XMP is embedded in ASF as an "Other" top-level object. The GUID in ASF notation is:

BE7ACFCB-97A9-42E8-9C71-999491E3AFAC

The GUID in file byte order is:

CBCF7ABE A997E842 9C719994 91E3AFAC

The data of the XMP object is the XMP packet, using UTF-8 encoding.

AVI

AVI (Audio-Video Interleaved) is a multimedia container format. AVI files can contain both audio and video
data in a standard container that allows synchronous audio-with-video playback.

About RIFF

AVI and WAV are both based on the RIFF file format, but are not otherwise similar. RIFF was created in 1991
by Microsoft and IBM, and there seem to be no actively maintained file-format specifications. RIFF is a
chunky format: a chunk has a 4 byte ID, a 4 byte length, and content. The ID is ASCII text, documented in
file order. The length is unsigned, little-endian, and is just the content length. A zero pad byte follows the
content if the length is odd.

Some RIFF chunks are containers of other chunks. The content of a container (not a formal term) is a 4 byte
ID followed by a sequence of nested chunks.

A normal RIFF file as a whole has an outer container chunk with an outer ID of "RIFF" and an inner ID that
defines the file type. That is, the whole file is one chunk with the ID "RIFF", and that chunk is a container
whose content begins with an ID for the file type followed by the "real" file structure. For AVI the inner ID is
"AVI ", for WAV the inner ID is "WAVE".

Another standard container is the "LIST" chunk. This is the normal grouping mechanism, used to create a
tree structure instead of a single flat sequence of top level chunks.

CHAPTER 3: Embedding XMP Metadata in Application Files Dynamic media formats 29

The XMP in AVI and WAV is in a chunk with the ID "_PMX", encoded as UTF-8. Note that the ID is backwards,
due to a bug in the initial implementation concerning processor byte order. The XMP chunk is immediately
within the outermost "RIFF" chunk. There is no ordering constraint of the XMP relative to other chunks.

NOTE: In the Adobe AVI and WAV handlers, for historical reasons, unused chunks get an ID of "JUNQ", not
the standard RIFF "JUNK".

Reference The Library of Congress Digital Preservation project has general RIFF information at:

http://www.digitalpreservation.gov/formats/fdd/fdd000025.shtml

This includes a link to an HTML version of "Multimedia Programming Interface and Data Specifications 1.0":

http://www.tactilemedia.com/info/MCI_Control_Info.html

About AVI

The OpenDML extensions talk about a variety of extensions for AVI files. Of particular interest to XMP are
issues about files larger than 1GB.

Because of bugs in early implementations of AVI, the standard RIFF/AVI chunk should be limited to a
maximum length of 1GB. The OpenDML specification tells how to go beyond this. Larger AVI files contain
an initial RIFF/AVI chunk, followed by a sequence of RIFF/AVIX chunks. The extension chunks must only
contain media content in LIST/movi chunks, everything else must be in the initial RIFF/AVI chunk. In
particular the XMP must be in the initial RIFF/AVI chunk.

AVI files can contain native metadata. See detail of how these are reconciled with XMP in “Native metadata
in AVI” on page 60.

Reference The Library of Congress Digital Preservation project has specific AVI information at:

http://www.digitalpreservation.gov/formats/fdd/fdd000059.shtml

This includes a link to OpenDML extensions at:

http://www.morgan-multimedia.com/download/odmlff2.pdf

FLV (Flash Video)

FLV is designed to carry synchronized audio and video streams, and is used to deliver video over the
Internet using Adobe Flash Player (in versions later than 6). Flash Video content may also be embedded
within SWF files.

FLV is a fairly simple format, with a strong orientation to streaming use. It consists of a small file header
then a sequence of tags that can contain audio data, video data, or ActionScript data. For FLV version 1,
each tag begins with an 11 byte header:

➤ UI8 tag type - 8 = audio tag, 9 = video tag, 18 = script data tag

➤ UI24 content length in bytes

➤ UI24 time - low order 3 bytes

➤ UI8 time - high order byte

➤ UI24 stream ID

http://www.digitalpreservation.gov/formats/fdd/fdd000025.shtml
http://www.tactilemedia.com/info/MCI_Control_Info.html
http://www.digitalpreservation.gov/formats/fdd/fdd000059.shtml
http://www.morgan-multimedia.com/download/odmlff2.pdf

CHAPTER 3: Embedding XMP Metadata in Application Files Dynamic media formats 30

This is followed by the tag's content, then a UI32 "back pointer" which is the header size plus the content
size. A UI32 zero is placed between the file header and the first tag as a terminator for backward scans. The
time in a tag header is the start of playback for that tag. The tags must be in ascending time order. For a
given time it is preferred that script data tags precede audio and video tags. Each audio or video tag
typically contains one frame of data.

For metadata purposes, only the script data tags are of interest. Script data information becomes
accessible to ActionScript at the playback moment of the script data tag through a call to a registered data
handler. The content of a script data tag contains a string and an ActionScript data value. The string is the
name of the handler to be invoked, the data value is passed as an ActionScript Object parameter to the
handler.

A variety of native metadata is contained in a script data tag with the name onMetaData. This contains
only internal information such as duration or width/height, nothing that is user- or author-editable, such
as title or description. Some of these native items are imported into the XMP; none are updated from the
XMP.

Placement
of XMP

XMP is embedded in FLV as a script data tag with the name onXMPData. It must be placed at time 0 and
must have stream ID 0. It should be after any time 0 onMetaData tag, and before any time 0 audio or video
tags.

Software looking for existing XMP must examine all time 0 tags. One cannot presume that all third party
modifiers of FLV files will preserve onMetaData, then onXMPData, then audio/video ordering.

The data value for onXMPData is an ECMA array. Standard serialized XMP is in an array item with the key
liveXML; the data of this item is an ActionScript string containing a normal UTF-8 XMP packet (including
padding). The ActionScript string can be a short or long string as appropriate.

Reference The formal specification for SWF and FLV is Macromedia Flash (SWF) and Flash Video (FLV) File Format
Specification Version 8. This is available at:

http://www.adobe.com/licensing/developer

NOTE : In the public FLV specification version 8 and earlier, there are errors in the descriptions of
SCRIPTDATAOBJECT, SCRIPTDATAOBJECTEND, SCRIPTDATAVARIABLE, SCRIPTDATASTRING,
SCRIPTDATALONGSTRING, SCRIPTDATADATE, ECMA arrays, and strict arrays.

MOV (QuickTime)

The QuickTime MOV file format was developed by Apple as a container for a wide variety of dynamic
media including sound, video, and animation. It functions as a multimedia container file that contains one
or more tracks, each of which stores a particular type of data: audio, video, effects, or text (for subtitles, for
example). Each track either contains a digitally-encoded media stream (using a specific codec) or a data
reference to the media stream located in another file. Tracks are maintained in a hierarchal data structure
consisting of objects called atoms.

The basic structure of a QuickTime file is similar to the RIFF format used by AVI and WAV. QuickTime was
used as the basis of the MPEG-4 format, ISO/IEC 14496-14.

The basic unit of a QuickTime file, the atom, is similar to the "chunks" in RIFF. An atom can either be a leaf
atom containing data, or a container atom containing other atoms. There is no structural indication of a
leaf or container atom, this is implicit in the atom's type. Other than nesting rules, there is generally no
necessary ordering among atoms.

http://www.adobe.com/licensing/developer

CHAPTER 3: Embedding XMP Metadata in Application Files Dynamic media formats 31

All atoms begin with a standard or extended header. The standard header has a 32-bit big-endian
unsigned length followed by a 32-bit type code. The type codes are almost always 4 ASCII characters, but a
few special cases exist (such as 0x00000001). The size field gives the atom's total size, including the 8-byte
header. If the initial size field is set to 1, a 64-bit big-endian size follows the standard header, forming an
extended header.

XMP is stored in QuickTime as an "XMP_" atom, within a "udta" atom, within a top level "moov" atom. The
XMP atom's content is the XMP packet, using UTF-8 encoding.

Reference The formal specification for the QuickTime file format is available at:

http://developer.apple.com/reference/QuickTime/idxFileFormatSpecification-date.html

MP3

MPEG-1 Audio Layer 3, more commonly referred to as MP3, is a popular audio encoding format. MPEG
stands for Moving Picture Experts Group. The formal standard is ISO/IEC IS 11172-3, but this only covers
the raw audio aspects. The metadata in MP3 files uses the ID3v2 format. When used with XMP, this must be
ID3v2.3 or ID3v2.4. The ID3v2.3 and ID3v2.4 formats are almost identical. The most notable difference is
that ID3v2.4 allows text values to be UTF-8, in addition to ISO 8859-1 (Latin-1) or UTF-16.

The entire ID3 portion of the MP3 file is called the ID3 "tag" (rather confusingly, given other media file and
metadata terminology). The individual metadata items are called ID3 "frames".

The XMP is placed within the ID3 as a "PRIV" frame with an Owner identifier of "XMP". The content of the
XMP PRIV frame is the XMP packet, encoded as UTF-8.

MP3 files can contain native metadata; see detail of reconciliation with XMP in “Native metadata in MP3”
on page 60.

Reference Specifications can be found at:

http://www.id3.org/id3v2.3.0
http://www.id3.org/id3v2.4.0-structure

MPEG-2

MPEG-2 is a standard for the generic coding of moving pictures and associated audio information. It
describes a combination of lossy video compression and lossy audio compression (audio data
compression) methods which permit storage and transmission of movies using currently available storage
media and transmission bandwidth. It is not the same as MPEG-1 Audio Layer II (MP2).

MPEG-2 is a common format for standard definition digital video. It is used for DVD discs, by DV
camcorders, for terrestrial (over the air) broadcast, for cable, and direct broadcast satellite. The formal
specification for MPEG-2 is ISO/IEC 13818.

XMP is not directly embedded within MPEG-2 files, but is specified as a sidecar file. This is a separate file
containing just the XMP packet, which is stored at the same location as the MPEG-2 file, and uses the same
file name, with the file extension .xmp replacing the original file extension.

MPEG-4

MPEG-4 is a collection of methods defining compression of audio and visual (AV) digital data. MPEG-4
absorbs many of the features of MPEG-1 and MPEG-2 and other related standards, adding new features

http://developer.apple.com/reference/QuickTime/idxFileFormatSpecification-date.html
http://www.id3.org/id3v2.3.0
http://www.id3.org/id3v2.4.0-structure

CHAPTER 3: Embedding XMP Metadata in Application Files Dynamic media formats 32

such as (extended) VRML support for 3D rendering, object-oriented composite files (including audio,
video and VRML objects), support for externally-specified Digital Rights Management and various types of
interactivity. AAC (Advanced Audio Codec) was standardized as an adjunct to MPEG-2 (as Part 7) before
MPEG-4 was issued.

The file format is defined by parts 12 and 14 of ISO 14496. Part 12 defines the "ISO Base Media File Format",
which happens to also be used by JPEG 2000 (ISO 15444). Part 14 describes MPEG-4 specific aspects.

Placement
of XMP

XMP is embedded in MPEG-4 files in the same manner as in JPEG 2000, using a top-level UUID box. The
UUID for both is:

BE7ACFCB 97A942E8 9C719994 91E3AFAC

The remainder of the box is a typical XMP packet, encoded as UTF-8, including packet wrapper and
padding.

MPEG-4 files can contain native metadata; see detail of reconciliation with XMP in “Native metadata in
MPEG-4” on page 61.

SWF (Flash)

SWF is a proprietary vector graphics file format produced by the Flash software from Adobe. Intended to
be small enough for publication on the web, SWF files can contain animations or applets of varying
degrees of interactivity and function. SWF is also sometimes used for creating animated display graphics
and menus for DVD movies, and television commercials.

SWF was designed to deliver vector graphics, text, video and sound over the Internet. The SWF file format
is designed to be an efficient delivery format, not a format for exchanging graphics between graphics
editors. SWF is quite different from the Flash Video file format, FLV. FLV is designed to carry synchronized
audio and video streams. See

An SWF file consists of a file header followed by a sequence of tagged data blocks, called tags. The tags
share a common format, so any program parsing a SWF file can skip over blocks it does not understand.
Data inside the block can point to offsets within the block, but can never point to an offset in another
block. This enables tags to be removed, inserted, or modified by tools that process a SWF file.

SWF files always store integers in little-endian byte order. The common tag structure is very simple, a short
or long tag header followed by the data. The short header is a 16-bit little-endian unsigned integer. The
upper 10 bits are the tag's type code, the lower 6 bits are the length of the data. If the data is 63 bytes or
longer, a long tag header is used. This is a short header with a length value of 63 (0x3F), followed by a
32-bit little-endian integer giving the actual data length.

Beginning with SWF 8, a FileAttributes tag is required immediately after the file header.

Placement
of XMP

XMP is supported beginning with SWF 8. There are two aspects to placing XMP in SWF:

➤ A flag in the FileAttributes tag denoting whether the file contains XMP.

➤ A tag containing the XMP.

The FileAttributes tag has a type code of 69. The tag data is 4 bytes containing several variable-length
bit fields. Counting bits from the low-order end, the HasMetadata flag is bit 4 of the first byte; that is, the
mask 0x10 selects the HasMetadata flag from the first byte. This flag must be set if and only if the file
contains XMP.

CHAPTER 3: Embedding XMP Metadata in Application Files Video package formats 33

The XMP tag (called the Metadata tag) has type code 77. The tag data is the serialized XMP, using UTF-8
encoding. It is best to omit the XMP packet wrapper (including padding) to save space. Similarly, you
should use RDF shorthand and omit formatting whitespace.

Reference The formal specification for SWF and FLV is "Macromedia Flash (SWF) and Flash Video (FLV) File Format
Specification Version 8." This is available at:

http://www.adobe.com/licensing/developer

NOTE: The SWF specification (not this XMP Specification) is the authority for how XMP is embedded in SWF.

WAV

WAV (or WAVE), short for Waveform audio format, is a Microsoft and IBM audio file format standard for
storing audio on PCs. It is a variant of the RIFF bitstream format method for storing data in "chunks", and
thus also close to the IFF (Amiga) and the AIFF (Mac OS) formats. It is the main format used on Windows
systems for raw audio. See “About RIFF” on page 28 for details.

The WAV format is covered by the base RIFF specification ("Multimedia Programming Interface and Data
Specifications 1.0") and the Exif 2.2 specification, with this exception: WAV files can have a top level DISP
chunk, for which there appears to be no public specification. The DISP chunk's content is a 32-bit
little-endian integer type code, followed by a null terminated string. The only recognized type code is 1.
The top-level DISP chunk is reconciled with dc:title["x-default"].

WAV files can contain native metadata; see details of reconciliation with XMP in “Native metadata in WAV”
on page 62.

Reference The Library of Congress Digital Preservation project has specific WAV information at:

http://www.digitalpreservation.gov/formats/fdd/fdd000001.shtml

Video package formats
Certain video formats have special considerations. In these formats a video entity (a movie) consists of a
collection, or package, of related files of various types—audio, video, voice, and so on. In video package
formats, the document unit is a called a clip. Information for an individual clip is stored in multiple files, in a
directory structure defined by the format specification. XMP metadata relates to the clip as a whole, rather
than to individual files, and is stored in its own file for the associated clip.

These folder-oriented formats use shallow trees with specific folder names and highly stylized file names.
The user thinks of the tree as a collection of clips, consisting of multiple files for video, audio, metadata,
and so on. For example, a portion of a P2 folder might look like this:

.../MyMovie
CONTENTS

CLIP
0001AB.XML
0002CD.XML

VIDEO
0001AB.MXF
0002CD.MXF

VOICE
0001AB.WAV
0002CD.WAV

http://www.adobe.com/licensing/developer
http://www.digitalpreservation.gov/formats/fdd/fdd000001.shtml

CHAPTER 3: Embedding XMP Metadata in Application Files Video package formats 34

The user thinks of .../MyMovie as the container of P2 video, which in this case contains two clips identified
with a file base name of 0001AB and 0002CD. Each clip is stored as a collection of files, each file holding
some specific aspect of the clip's data. The exact folder structure and file layout differs, but the basic
concepts carry across all of the folder-oriented video-package formats.

NOTE: The folder layout descriptions here are meant to show typical usage and describe where XMP files
are found; they are not meant to be complete or definitive package format descriptions.

➤ AVCHD

➤ P2

➤ Sony HDV (High Definition Video)

➤ XDCAM EX

➤ XDCAM FAM

➤ XDCAM SAM

AVCHD

AVCHD (Advanced Video Codec High Definition) is a high-definition video recording format for use in
digital tapeless camcorders. The format is comparable to other handheld video camera recording formats,
particularly TOD, HDV and MiniDV.

A typical AVCHD package layout looks like this:

BDMV/
index.bdmv
MovieObject.bdmv
PLAYLIST/

00000.mpls
00001.mpls

STREAM/
00000.m2ts
00001.m2ts
00001.xmp

CLIPINF/
00000.clpi
00001.clpi

 BACKUP/

A base name with a numeric sequence distinguishes files belonging to the same clip. The XMP is placed in
the STREAM folder, using the clip base name and the extension XMP.

In this example, the files 00001.mpls, 00001.m2ts, and 00001.clpi all belong to clip 1. The related
metadata is in 00001.xmp.

P2

A P2 card is a solid-state memory device that plugs into the PCMCIA slot of a Panasonic P2 video camera,
such as the AG-HVX200. The digital video and audio data from the video camera is recorded onto the card
in a structured, codec-independent format known as MXF (Media eXchange Format). A clip is said to be in
the P2 format if its audio and video are contained in Panasonic Op-Atom MXF files, and these files are
located in a specific file structure.

CHAPTER 3: Embedding XMP Metadata in Application Files Video package formats 35

The root of the P2 file structure is a CONTENTS folder. Each essence item (an item of video or audio) is
contained in a separate MXF wrapper file; the video MXF files are in the VIDEO subfolder, and do on. The
relationships between essence files and the metadata associated with them are tracked by XML files in the
CLIP subfolder.

A typical P2 layout looks like this:

.../MyMovie
 CONTENTS/
 CLIP/
 0001AB.XML
 0001AB.XMP
 0002CD.XML
 0002CD.XMP
 VIDEO/
 0001AB.MXF
 0002CD.MXF
 AUDIO/
 0001AB00.MXF
 0001AB01.MXF
 0002CD00.MXF
 0002CD01.MXF
 ICON/
 0001AB.BMP
 0002CD.BMP
 VOICE/
 0001AB.WAV
 0002CD.WAV
 PROXY/
 0001AB.MP4
 0002CD.MP4

This shows two clips whose file base names are 0001AB and 0002CD.

A base name with a numeric sequence distinguishes files belonging to the same clip. The XMP is placed in
the CLIP folder, beside the.XML file that defines the existance of the clip. The .XML file contains a variety of
information about the clip, including some native metadata.

The XMP is stored using the clip base name and the extension XMP. In the example, the file 0001AB.XMP
contains the metadata associated with the clip defined by 0001AB.XML.

Sony HDV (High Definition Video)

A typical Sony HDV layout looks like this:

.../MyMovie/
 VIDEO/
 HDV/
 00_0001_2007-08-06_165555.IDX
 00_0001_2007-08-06_165555.M2T

00_0001_2007-08-06_165555.XMP
00_0001_2007-08-06_171740.IDX
00_0001_2007-08-06_171740.M2T
00_0001_2007-08-06_171740.XMP
tracks.dat

CHAPTER 3: Embedding XMP Metadata in Application Files Video package formats 36

This shows two clips with the same base name, but different time stamps. The .IDX file defines the
existence of the clip. XMP is stored in a file with the clip base name, the date/time suffix from the
associated .IDX file, and the .XMP extension.

XDCAM EX

This package format is used by certain models of the Sony XDCAM line of high-definition disc video
camcorders. See also “XDCAM FAM” on page 36 and “XDCAM SAM” on page 37.

NOTE : Sony documentation uses mixed-case folder names "General", "Clip", "Sub", and "Edit". The names
are shown in all caps here.

A typical XDCAM EX package layout looks like this:

.../MyMovie/
BPAV/

MEDIAPRO.XML
MEDIAPRO.BUP
CLPR/

709_001_01/
709_001_01.SMI
709_001_01.MP4
709_001_01M01.XML
709_001_01M01.XMP
709_001_01R01.BIM
709_001_01I01.PPN

709_001_02/
709_002_01/
709_003_01/

The CLPR (clip root) folder contains clip subfolders, whose name is the base file name for that clip. Each clip
folder contains a media file (.MP4), a clip information file (.SMI), a real-time native metadata file (.BIM), a
non-real-time native metadata file (.XML), and a picture pointer file (.PPN).

XMP metadata is stored in the .XMP file within a clip directory, using the same base name as the XML file.

XDCAM FAM

This package format is used by certain models of the Sony XDCAM line of high-definition disc video
camcorders. See also “XDCAM EX” on page 36 and “XDCAM SAM” on page 37.

A typical FAM layout looks like this:

.../MyMovie/
 INDEX.XML
 DISCMETA.XML
 MEDIAPRO.XML

CLIP/
 C0001.MXF
 C0001M01.XML
 C0001M01.XMP
 C0002.MXF
 C0002M01.XML
 C0002M01.XMP

The top-level folder MyMovie/ contains XDCAM data for two clips whose raw names are C0001 and C0002.
The CLIP folder contains at least one .XML file that defines the existence of a clip with that base file name..

CHAPTER 3: Embedding XMP Metadata in Application Files Adobe application formats 37

A clip file and its related XMP are kept together in the CLIP folder.

➤ The .XML file defines the existance of the clip. The name uses the base clip name plus additional
identifying characaters. It contains a variety of information about the clip, including some native
metadata.

➤ The .XMP file with the same base file name as the XML file contains the XMP for the clip.

XDCAM SAM

This package format is used by certain models of the Sony XDCAM line of high-definition disc video
camcorders. See also “XDCAM EX” on page 36 and “XDCAM FAM” on page 36.

A typical SAM layout looks like this:

.../MyMovie/
PROAV/

 INDEX.XML
DISCMETA.XML

 DISCINFO.XML
CLPR/

 C0001/
 C0001C01.SMI
 C0001V01.MXF
 C0001A01.MXF
 C0001A02.MXF
 C0001R01.BIM
 C0001I01.PPN
 C0001M01.XML
 C0001M01.XMP
 C0001S01.MXF
 C0002/

...

The CLPR/ folder contains a subfolder for each clip, which use the base file name. This example shows two
clips, with base names C0001 and C0002.

A clip file and its related XMP are kept together in the CLPR/<clip> folder.

➤ The .XML file defines the existance of the clip. The name uses the base clip name plus additional
identifying characaters. It contains a variety of information about the clip, including some native
metadata.

➤ The .XMP file with the same base file name as the XML file contains the XMP for the clip.

Adobe application formats
➤ “AI (Adobe Illustrator)” on page 38

➤ “INDD, INDT (Adobe InDesign)” on page 38

➤ “PSD (Adobe Photoshop)” on page 42

CHAPTER 3: Embedding XMP Metadata in Application Files Adobe application formats 38

AI (Adobe Illustrator)

An .ai file generated by Adobe Illustrator® is in the Portable Document Format (PDF). Hence, the format
for embedding XMP metadata is the same as for PDF files.

INDD, INDT (Adobe InDesign)

InDesign document files (.indd) and InDesign template files (.indt) are primarily paged database files.
They have 4KB pages with a leading pair of master pages to allow single write commits. The detailed
structure of the database is proprietary.

Externally editable XMP is supported for database files from InDesign 2.0 and later through a "contiguous
object" section at the end of the file. It is possible to modify, even extend, the XMP in the contiguous
object section. It is not possible to add XMP to a database that has none without intimate knowledge of
the database.

In brief, the active master page tells how many database pages the file contains. The contiguous object
section begins after the last database page and extends to the end of the file. It contains copies of
database objects, stored in a contiguous (non-paged) manner.

The majority of an InDesign database file consists of the 4K pages that comprise the transacted database
storage. You can use the first two pages in the file, called the Master Pages, to determine whether
contiguous objects are present, where they are, and whether they include any XMP metadata objects that
contain XMP packets. InDesign document databases do typically contain XMP metadata, but this is not
strictly required. Other types of InDesign files, such as book files do not currently contain metadata.

➤ For details of the Master Page structure, see “Master page structure” on page 40.

➤ For details of the Header and Trailer that enclose each contiguous object, see “Header and trailer
structure” on page 41

Finding XMP in an InDesign file

To efficiently find XMP data when present in an InDesign database file:

CHAPTER 3: Embedding XMP Metadata in Application Files Adobe application formats 39

1. Verify the first 16 bytes of the file are the GUID for an InDesign database file.

2. Read the two Master Page sequence numbers, and decide which master page is the current one,
having the larger sequence number.

3. Using fFilePages from the current master page, seek to absolute file position fFilePages * 4096.
Remember that a database file may exceed 4 gigabytes in size.

4. Search through the contiguous objects for an XMP packet. When the contiguous object you are
examining is the persisted representation of an object that contains an XMP packet, the stream
between the headers consists of a 4-byte integer specifying the length for the XMP packet, followed
by the XMP packet itself.

➣ The byte-order of the length integer is governed by the fObjectStreamEndian field from the
master page. This is true only of this value; all integer values within the data are in little-endian
order.

➣ The packet header begins like this:

<?xpacket begin="W5M0MpCehiHzreSzNTczkc9d"

The quote characters can be double (") or single (').

Rewriting XMP data beyond the packet padding

The length value that precedes the packet header must equal fStreamLength (from the header and
trailer) minus 4 bytes (for the length value itself). You should verify that this is true before attempting to
rewrite the XMP packet, and thus rewrite the length value. If the first four-byte integer in the stream
(interpreted using the Master Page-specified byte order) is not fStreamLength-4, you should not enlarge
the packet but simply use the padding if possible.

If you rewrite a contiguous object that contains an XMP packet, follow these rules:

1. While looking for a contiguous object header beyond the paged part of the file (as directed by
fFilePages in the master page), if you find something which is not a header GUID but not zero
padding at the end of the file, assume the file format has changed and fall back to default behavior.

2. InDesign might store other contiguous objects besides XMP packets at the end of the file in the same
way. The API that allows this is public, so a third-party developer might also store arbitrary objects
there. If you rewrite an XMP packet, make sure you are changing only the object that contains your
XMP packet, and preserve any other contiguous object copies you find at the end of the file.

3. Verify that the XMP object you want to rewrite is marked externally writable in the contiguous object
header (or trailer).

4. Verify that the first four-byte integer (variable endian) in the XMP object stream is indeed the length of
the XMP packet immediately following, and that this value is the header's (or trailer's)
fStreamLength - 4.

5. When you rewrite the XMP object, rewrite the header and trailer for the XMP object with an
fChecksum field of 0xffffffff and an updated fStreamLength field.

6. The size in bytes of an InDesign database file is required to be a multiple of 4K. A file that violates this
constraint is considered corrupt. If you are rewriting contiguous objects at the end of the file to
expand an XMP packet, pad the file with zeros if necessary after the last contiguous object trailer to
ensure this condition is met.

CHAPTER 3: Embedding XMP Metadata in Application Files Adobe application formats 40

Master page structure

The following code shows the parts of the Master Pages of interest with respect to metadata:

struct MasterPage {

// 16 byte GUID identifying this as an InDesign database
// Must be: 0606EDF5-D81D-46e5-BD31-EFE7FE74B71D
char fGUID [16];

// 8 bytes; type of database (for example "DOCUMENT")
char fMagicBytes [8];

// Endian of object streams, 1=little endian, 2=big endian
char fObjectStreamEndian;

// Irrelevant stuff
char fIrrelevant1 [239];

// Master page sequence number. The master page with
// the larger value is the current master page
LittleEndianUnsignedInt64 fSequenceNumber;

// More irrelevant stuff
char fIrrelevant2 [8];

// The number of pages in the file. fFilePages * 4096
// is the absolute file offset in bytes of where any
// contiguous data storage would begin (provided this
// master page is the current master page).
LittleEndianUnsignedInt32 fFilePages;

// More irrelevant stuff
char fIrrelevant3 [3812];

};

fGUID The first 16 bytes of each master page (and thus the first 16 bytes of the file) are
set to a GUID that identifies the file as an InDesign database.

The ID value of the master page is:

0606EDF5-D81D-46e5-BD31-EFE7FE74B71D

You must check for this value. If it is not present, something has changed in an
incompatible way in the file format and you can make no further assumptions.
You can the entire file to find XMP metadata, but you cannot add additional
metadata beyond any padding provided in the packet.

fMagicBytes Contains an 8 byte sequence identifying the type of database file.

This can be useful if you want this information and cannot get it from the file
extension or type and creator. The 8 characters "DOCUMENT" designate a
database that contains an InDesign document and would normally have a
.indd extension.

CHAPTER 3: Embedding XMP Metadata in Application Files Adobe application formats 41

Header and trailer structure

The following code shows the parts of the Header and Trailer of a contiguous object which are of interest
with respect to metadata:

struct ContiguousObjectStreamHeaderOrTrailer {

// 16 byte GUID identifying this as either a header or trailer
// Headers are: DE393979-5188-4b6c-8E63-EEF8AEE0DD38
// Trailers are: FDCEDB70-F786-4b4f-A4D3-C728B3417106
uint8 fGUID [16];

// UID of the corresponding object in the database
LittleEndianUnsignedInt32 fObjectUID;

// ClassID of the object. This object is externally
// writable if and only if fObjectClassID & 0x40000000 == 0x40000000.
LittleEndianUnsignedInt32 fObjectClassID;

// Length of the stream of data which is the persistent
// representation of the object. This is the size in
// bytes of the data between the header and trailer.
LittleEndianUnsignedInt32 fStreamLength;

// The ADLER32 checksum (see RFC1950) of the stream of
// data at the time it was last written by InDesign.
// InDesign only propagates externally writable contiguous
// objects back into the database when there is a checksum mismatch.
LittleEndianUnsignedInt32 fChecksum;

};

fObjectStreamEndian The byte order (big-endian or little-endian) in which integers in an object
stream are written, which depends on the creation platform of the database.

You must use this byte-order to interpret the packet-length value if you
enlarge XMP packets and rewrite the file format; see“Rewriting XMP data
beyond the packet padding” on page 39.

You do not need it to find or interpret the XMP data; all integer values in the
storage structures themselves are uniformly little-endian.

fSequenceNumber The master page sequence number, a value that is incremented each time a
new master page is written.

To ensure data integrity, the current master page is written in an alternating
fashion to the first two pages in the file. You must discover which master page
of the pair is the current one by finding which has the larger sequence number.
This integer field, like the others in the storage structures, is written in a
standard little-endian form regardless of database creation platform.

fFilePages The number of 4K pages (including the master pages) in the transacted
database part of the file. To efficiently search for XMP metadata, seek to and
read from the absolute file position 4096 * fFilePages.

CHAPTER 3: Embedding XMP Metadata in Application Files Adobe application formats 42

PSD (Adobe Photoshop)

An Adobe Photoshop® .psd file is divided into five sections. The file header and image resource sections
are important for metadata access. Multibyte integers are stored big-endian on all platforms.

The file sections relevant to metadata are:

fGUID A16-byte GUID identifying the structure as either a contiguous object header or
trailer. This is the only difference between a header and trailer, which otherwise hold
copies of the same information.

➤ The header ID value is:

DE393979-5188-4b6c-8E63-EEF8AEE0DD38

➤ The trailer ID value is:

FDCEDB70-F786-4b4f-A4D3-C728B3417106

fObjectUID The unique identifier of the original object in the database, whose persistent
representation has a contiguous copy here at the end of the file.

Because there is a one-to-one correspondence between object copies here at the
end of the file and objects stored in the main database, you are not free to add an
object containing an XMP packet if one does not exist. Also, removing a contiguous
object copy will not result in the deletion of the corresponding database object
when the file is next opened by InDesign; the best you could do to remove all
metadata is rewrite an existing object to contain an XMP packet that is well formed
but devoid of content.

fObjectClassID Information about the object type, a set of bit flags. The second most significant bit
of this field, when set, declares the object as externally writable.

If you find an object containing an XMP packet but this bit is not set, changes to that
object are not allowed and would not be propagated back into the database.
InDesign makes all XMP objects writable.

fStreamLength The number of bytes in the persistent representation of the object, which is also the
number of bytes between the header and the trailer.

If you are writing new headers and trailers because you are enlarging an XMP object,
you need to update this field in the header and trailer. For an XMP object, this is the
size of the XMP packet itself plus a 4-byte integer specifying the length of the XMP
packet; see “Rewriting XMP data beyond the packet padding” on page 39.

fChecksum The ADLER32 (see RFC1950) checksum of the object stream (all data between
header and trailer) at the time InDesign wrote it out.InDesign uses this when it opens
the database to check whether a contiguous object copy has changed, and the
changes need to be propagated into the primary part of the database.

If you rewrite an object, set the fChecksum field to 0xffffffff to ensure that a
checksum mismatch occurs and InDesign recognizes your changes.

CHAPTER 3: Embedding XMP Metadata in Application Files Adobe application formats 43

NOTE: TIFF, JPEG, and PSD share complex issues of how native metadata formats are stored; see “Native
metadata in digital photography formats” on page 62.

PSD file
header
block

PSD image
resource
blocks

File header A 26 byte block; see “PSD file header block” on page 43. Only the signature and
version fields affect metadata.

Color mode data Contains a 4 byte length value, followed by the data.

Image resources Used to store non-pixel data associated with an image. Begins at file offset 30
(26+4) plus the length of the color mode data.

The section contains a 4 byte length value, followed by the data for all image
resources. The length value is the total length of the image resource section, which
is a sequence of individual image resources.

The internal structure of an image resource is described in “Photoshop image
resources for metadata” on page 70. The TIFF and JPEG file formats can also contain
Photoshop image resources, although the content varies according to what file
format the resource is in.

Offset Length Description

0 4 File signature, must be "8BPS"

4 2 Version, 1 for normal files, 2 for "big" files. This distinction is primarily in the
maximum image dimensions. There is no distinction between them for metadata
parsing.

6 6 Reserved, must be zero

12 2 Number of channels

14 4 Image height in pixels

18 4 Image width in pixels

22 2 Number of bits per channel

24 2 Color mode

Field Type Description

Type OSType Adobe applications always uses the signature 8BIM. Other values can appear, and
must be tolerated by readers.

ID 2 bytes ID = 1060 for XMP metadata.

Name PString There is no name value in XMP image resources.

CHAPTER 3: Embedding XMP Metadata in Application Files Markup formats 44

Reference Official documentation for the Photoshop file format is part of the Photoshop SDK. Information about the
Photoshop SDK is available from:

http://partners.adobe.com/public/developer/photoshop/devcenter.html

Markup formats
➤ “HTML” on page 44

➤ “XML” on page 45

HTML

XMP embedded in HTML should conform to one of the W3C recommendations for embedding XML in
HTML. For reference information, see the meeting report for the May 1998 W3C meeting:

http://www.w3.org/TR/NOTE-xh

XML can be embedded in a SCRIPT or XML element, placed in any legal location; the suggested location is
the end of the HEAD element. The content of the SCRIPT or XML element is the XMP packet.

The browser must recognize the SCRIPT or XML element so that text representing the value of RDF
properties is not displayed as page content. Using the XML element is preferred unless there are known
incompatibilities with older software; if so, the SCRIPT element is likely to be recognized.

Embedding XML in HTML

There are three approaches to embedding XML in HTML, as shown in the examples below. Two use the
SCRIPT element, and the third uses the XML element.

Using the SCRIPT element and LANGUAGE attribute

<html>
<head>

<SCRIPT LANGUAGE="XML">
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It is removed for brevity. -->
<?xpacket end='w'?>
</SCRIPT>

</head>
<body>
</body>

</html>

Size 4 bytes Actual size of resource data. This does not include the Type, ID, Name, or Size
fields.

Data Variable Resource data, padded to make size even (that is, an extra zero byte is appended
to the “raw” field value if needed).

This is the XMP packet, which must be encoded as UTF-8.

Field Type Description

http://partners.adobe.com/public/developer/photoshop/devcenter.html
http://www.w3.org/TR/NOTE-xh

CHAPTER 3: Embedding XMP Metadata in Application Files Document formats 45

NOTE: Adobe has noticed problems with using the SCRIPT element and LANGUAGE attribute in
Microsoft Word 2000 running under Microsoft Windows XP: the body content cannot be displayed.

Using the SCRIPT element and TYPE attribute

<html>
<head>

<SCRIPT TYPE="text/xml">
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It is removed for brevity. -->
<?xpacket end='w'?>
</SCRIPT>

</head>
<body>
</body>

</html>

Using the XML element

<html>
<head>

<XML>
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It is removed for brevity. -->
<?xpacket end='w'?>
</XML>

</head>
<body>
</body>

</html>

XML

XMP metadata, because it is legal XML, can be directly embedded within an XML document. An XMP
packet is not intended to be a complete standalone XML document; therefore it contains no XML
declaration. The XMP packet can be placed anywhere within the XML document that an element or
processing instruction would be legal.

It is recommended that the file be encoded as Unicode using UTF-8 or UTF-16. This provides compatibility
for software that scans for XMP packets and parses just their content.

Reference For reference information, see the XML specification:

http://www.w3.org/TR/REC-xml

Document formats
➤ “PDF” on page 45

➤ “PS, EPS (PostScript and Encapsulated PostScript)” on page 46

PDF

For PDF files, the XMP packet is embedded in a metadata stream contained in a PDF object (beginning
with PDF 1.4). The XMP must be encoded as UTF-8.

http://www.w3.org/TR/REC-xml

CHAPTER 3: Embedding XMP Metadata in Application Files Document formats 46

This is a partial example of XMP metadata embedded as an XMP packet, stored as a metadata stream:

1152 0 obj
<< /Type /Metadata /Subtype /XML /Length 1706 >>

stream
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It has been removed for brevity. -->
<?xpacket end='w'?>

endstream
endobj

PDF files that have been incrementally saved can have multiple packets that all look like the “main” XMP
metadata. During an incremental save, new data (including XMP packets) is written to the end of the file
without removing the old. Top-level PDF dictionaries are also rewritten, so an application that understands
PDF can check the dictionary to find only the new packet.

Reference Full documentation on metadata streams in PDF files is available in the PDF Reference, Version 1.5:

http://www.adobe.com/devnet/pdf/pdf_reference.html

NOTE: The PDF specification (not this XMP Specification) is the authority for how XMP is embedded in PDF.

PS, EPS (PostScript and Encapsulated PostScript)

PostScript® is a page description and programming language. Encapsulated PostScript (EPS), is a
DSC-conforming PostScript document with additional restrictions intended to make EPS files usable as a
graphics file format. EPS files are more-or-less self-contained, reasonably predictable PostScript
documents that describe an image or drawing, that can be placed within another PostScript document.

XMP metadata can be placed in PostScript® or EPS files, for use in either PostScript or PDF workflows. This
section describes how to place XMP into PostScript or EPS for both the outer document level (main XMP)
and for internal objects such as an image (object XMP). It also specifically discusses issues involving
Acrobat Distiller, since workflows often use Distiller to produce PDF from PostScript and EPS.

NOTE: This does not imply that use of Distiller is necessary, or that other application issues do not exist.

There are three important “flavors” of PostScript files that can affect how XMP is written, found, and used.
They are:

➤ DSC PostScript (or just “PostScript”): PostScript conforming to the DSC conventions defined in
Appendix G of the PostScript Language Reference.

➤ Raw PostScript: PostScript following no particular structural conventions. The use of raw PostScript is
discouraged. As mentioned in “Ordering of content” on page 47, a special DSC comment is required to
support fast and reliable location of the main XMP.

➤ EPS: PostScript conforming to the EPS conventions defined in Appendix H of the PostScript Language
Reference. EPS is a subset of DSC PostScript.

Because of common usage issues, document-level XMP should be written differently for PostScript and
EPS. Object-level XMP is written identically for PostScript and EPS.

The XMP in a PostScript/EPS file must be encoded as UTF-8.

http://www.adobe.com/devnet/pdf/pdf_reference.html

CHAPTER 3: Embedding XMP Metadata in Application Files Document formats 47

Document-level metadata in PostScript

As with any file format, locating contained XMP in PostScript or EPS is most reliably done by fully
processing the file format. For PostScript, this means executing the PostScript interpreter. Packet scanning
is not reliable whenever a file contains multiple XMP packets, or object XMP without main XMP.

It is often worthwhile to find the main XMP and ignore (at least temporarily) object XMP. Interpretation of
the entire PostScript file to locate the main XMP can be very expensive. A hint and careful ordering are
used to allow a combination of XMP packet scanning and PostScript comment scanning to reliably find the
main XMP.

To write document-level metadata in PostScript, an application must:

➤ Write the %ADO_ContainsXMP comment as described under “Ordering of content” on page 47.

➤ Write the XMP packet as described under “Document-level XMP in PostScript” on page 48.

To write document-level metadata in EPS an application must:

➤ Write the %ADO_ContainsXMP comment as described under “Ordering of content” on page 47.

➤ Write the XMP packet as described under “Document-level XMP in EPS” on page 49.

Use of raw PostScript is discouraged specifically because it lacks the %ADO_ContainsXMP comment. If raw
PostScript must be used, the XMP must be embedded as described under “Document-level XMP in
PostScript” on page 48.

Ordering of content

Many large publications use PostScript extensively. It is common to have very large layouts with hundreds
or thousands of placed EPS files. Because PostScript is text, locating XMP embedded within PostScript in
general requires parsing the entire PostScript program, or at least scanning all of its text. Placed PostScript
files can be quite large. They can even represent compound documents, and might contain multiple XMP
packets. For PostScript files containing XMP at all, the entire file would have to be searched to make that
simple determination.

All of this presents performance challenges for layout programs that want to process XMP embedded in
PostScript. As a pragmatic partial solution, a special marker comment can be placed in the PostScript
header comments to provide advice about locating the main XMP. This marker must be before the
%%EndComments line.

The purpose of this marker is to tell applications consuming the PostScript whether a main XMP is present
at all, and how to look for the main XMP. The form of the XMP marker is:

%ADO_ContainsXMP: <option> ...

The marker must be at the beginning of a line. An option is a contiguous sequence of characters that does
not include spaces, tabs, linefeeds, or carriage returns; options are case sensitive. There must be no
whitespace before the colon. Applications should ignore options they do not understand.

There are three options defined at present. They are mutually exclusive and provide a hint about how to
find the main XMP. Note that the main XMP is not necessarily the document-level XMP:

➤ MainFirst: The main XMP is the first XMP packet in the file and is located near the front of the file. The
XMP should be in front of as much PostScript content as possible.

CHAPTER 3: Embedding XMP Metadata in Application Files Document formats 48

➤ MainLast: The main XMP is the last XMP packet in the file and is located near the back of the file. The
XMP should be behind as much PostScript content as possible.

➤ NoMain: There is no main XMP packet for the PostScript file. The file might still contain XMP packets, for
example within embedded EPS sections or attached to internal objects.

NOTES: The XMP location option applies to both the location of the main XMP in the file and to its
position relative to other object-level XMP. The main XMP packet must be before all other XMP if
MainFirst is used; it must be after all other XMP if MainLast is used. It is not necessary for the other
XMP packets to be adjacent to the main packet.

When EPS files are concatenated, it is necessary to provide a new set of PostScript header comments
for the aggregate, and optionally new a main XMP packet. Otherwise the XMP marker comment from
the first EPS portion would erroneously be taken to refer to the aggregate.

Document-level XMP in PostScript

This section assumes that PostScript devices are level 2 or newer, and that Distiller version 6.0 or newer is
used. Compatibility issues are discussed in “Compatibility with Distiller 5 for PostScript” on page 50 and
“LanguageLevel 1 for PostScript and EPS” on page 50.

There are three main steps to setting up the document-level XMP:

1. Creating a PostScript stream object to contain the XMP.

2. Placing the XMP into the stream object.

3. Associating the XMP stream object with the document.

XMP metadata must be embedded in a PostScript file in a way that it will be recognized by software that
scans files for metadata, which means embedding the complete XMP packet. However, if that file were
sent to a PostScript output device, the packet data would cause PostScript errors and the job would fail. To
be able to handle arbitrary data, we need a procedure to read the XMP data from the current file, and
discard the data if it is not intended to be interpreted.

NOTE: In what follows, we define some procedures in a private dictionary, such as:

privatedict /metafile_pdfmark {flushfile cleartomark} bind put

The name privatedict is for illustration purpose only. In the real product code, these procedures
should be defined in a unique dictionary so that several EPS files can be used in one document and
slightly different versions of these procedures can co-exist.

Here is an example that shows how to embed document-level XMP in PostScript. This example does not
include the required marker comment.

% ==
% We start with some Postscript prolog. This defines operators and
% procedures that we will use when processing the XMP metadata.
% Define pdfmark to cleartomark, so the data is discarded when consumed
% by a PostScript printer or by Distiller 4.0 or earlier. All following
% references to “privatedict” should be changed to a unique name to
% avoid potential conflicts (see “Avoiding name conflicts” on page 50).

/currentdistillerparams where
{pop currentdistillerparams /CoreDistVersion get 5000 lt} {true} ifelse

CHAPTER 3: Embedding XMP Metadata in Application Files Document formats 49

{privatedict /pdfmark /cleartomark load put
privatedict /metafile_pdfmark {flushfile cleartomark} bind put}

{privatedict /metafile_pdfmark {/PUT pdfmark} bind put} ifelse

% ==
% We now create the stream containing the XMP metadata. This must follow
% the prolog shown above, but does not need to be adjacent to it.

% Create a pdfmark named stream object to hold the data. As with the
% privatedict above, use of a unique name is recommended, not literally
% my_metadata_stream_123. The name of this stream is local to the
% Postscript program, it has no outside significance.

% First define the stream object, then read the XMP packet into the
% stream, finally attach the stream as the main XMP.

% The “&&end XMP packet marker&&” comment is significant, it terminates
% the reading of the XMP packet.

% First: Create the XMP metadata stream object and say that it is XMP.

[/_objdef {my_metadata_stream_123} /type /stream /OBJ pdfmark
[{my_metadata_stream_123} 2 dict begin

/Type /Metadata def /Subtype /XML def currentdict end /PUT pdfmark

% Second: Fill the stream with the XMP packet.

[{my_metadata_stream_123}
currentfile 0 (% &&end XMP packet marker&&)
/SubFileDecode filter metafile_pdfmark

... XMP packet goes here ...

% &&end XMP packet marker&&

% Third: Attach the stream as the main XMP metadata stream.

[{Catalog} {my_metadata_stream_123} /Metadata pdfmark

Document-level XMP in EPS

Embedding XMP inside EPS is very similar to PostScript; however, there are issues raised by the common
practice of embedding EPS within other EPS or PostScript. The notion of document-level XMP in EPS really
means outermost XMP in the EPS. This will be document-level XMP in the PDF if the EPS is distilled alone.
This will be appropriate marked content if the EPS is embedded in other EPS or PostScript.

The solution for EPS requires:

➤ The XMP must be placed before all EPS content (PostScript drawing commands).

➤ The /BDC and /EMC pdfmarks must be used to bracket the EPS content.

➤ The third XMP setup step uses different PostScript code.

Here is an abbreviated example, modified from the previous example:

%%EndPageSetup
[/NamespacePush pdfmark

... Do all of the XMP setup as above, up to step 3 ...

% Third: Attach the stream to the Marked Content dictionary.
% All drawing commands must be between the /BDC and /EMC operators.

CHAPTER 3: Embedding XMP Metadata in Application Files Document formats 50

[/Document 1 dict begin
/Metadata {my_metadata_stream_123} def currentdict end /BDC pdfmark

[/NamespacePop pdfmark

... All drawing commands go here ...

%%PageTrailer
[/EMC pdfmark

Avoiding name conflicts

In the samples, we used the name {my_metadata_stream_123} and suggested that some form of unique
name be used. The recommended approach is to generate a typical UUID and strip out all but the
significant alphanumeric characters. Use this as a suffix to the name.

An alternate solution is to use NamespacePush and NamespacePop pdfmarks. This is also the
recommended solution in the Pdfmark Reference Manual (it is accessible from Distiller’s Help menu.) This is
preferable if possible, but might require large and untenable separation of the push and pop.

It is important to put all pdfmarks using the named objects in the same block bracketed by
NamespacePush and NamespacePop pair; for example, the following PostScript code is bad:

[/NamespacePush pdfmark
[/_objdef {my_metadata_stream_123} /type /stream /OBJ pdfmark
[{my_metadata_stream_123} 2 dict begin

/Type /Metadata def /Subtype /XML def currentdict end /PUT pdfmark
[{my_metadata_stream_123}

currentfile 0 (% &&end XML Packet marker&&)
/SubFileDecode filter metafile_pdfmark

XML Packet goes here ...
% &&end XML Packet marker&&
[/NamespacePop pdfmark

% At this point, the name {my_metadata_stream_123} is no longer usable.
% next line will cause “undefined” error:

[{Catalog} {my_metadata_stream_123} /Metadata pdfmark

Compatibility with Distiller 5 for PostScript

Acrobat Distiller version 5 was the first to include XMP support, but it does not support the /Metadata
pdfmark. There is no easy way to attach document-level XMP with Distiller 5. It will ignore the /Metadata
pdfmark, without signaling a PostScript error.

LanguageLevel 1 for PostScript and EPS

The SubFileDecode filter became available in PostScript LanguageLevel 2. If the PostScript or EPS
containing XMP must be processed by PostScript LanguageLevel 1 devices, such as older printers, another
approach must be used to read the XMP into the stream object.

With PostScript LanguageLevel 1, there are at least two approaches: using readstring to read in the
whole XMP packet, or readline to read in the XMP packet data line by line until an end marker is found.

We present the readline approach here. The readline approach solves two problems that exist for
readstring:

➤ We do not have to know the exact size of the whole packet, just need to know the maximum length of
the lines.

CHAPTER 3: Embedding XMP Metadata in Application Files Document formats 51

➤ The exact length of an XMP packet may change if the PostScript/EPS file is re-saved by a text editor
with different line ending convention, CR, LF, or CRLF.

Here is an example showing how to use the readline approach for PostScript. It is very similar overall to
the earlier example, differing only in step 2 and related prolog:

% ==
% We start with some Postscript prolog. This defines operators and
% procedures that we will use when processing the XMP metadata.

% Define pdfmark to cleartomark, so the data is discarded when consumed
% by a PostScript printer or by Distiller 4.0 or earlier. All following
% references to “privatedict” should be changed to a unique name to
% avoid potential conflicts. This is discussed later in the section
% “Avoiding Name Conflicts”.

/currentdistillerparams where
{pop currentdistillerparams /CoreDistVersion get 5000 lt} {true} ifelse
{privatedict /pdfmark /cleartomark load put} if

% Define another procedure to read line by line from current file until
% marker line is found. The maximum line length is used to create a
% temporary buffer for reading the XMP lines.
% On stack: [{name} maxLineLength MarkerString

privatedict /metastring_pdfmark
{ 2 dict begin
/markerString exch def string /tmpString exch def
{ currentfile tmpString readline pop
markerString anchorsearch
{pop pop cleartomark exit}
{3 copy /PUT pdfmark pop 2 copy (\n) /PUT pdfmark} ifelse
} loop
end
}bind put

% ==
% We now create the stream containing the XMP metadata. This must follow
% the prolog shown above, but does not need to be adjacent to it.

% Create a pdfmark named stream object in PDF to hold the data. As with
% privatedict above, use of a unique name is recommended, not literally
% my_metadata_stream_123. The name of this stream is local to the
% Postscript program, it has no outside significance.

% First define the stream object, then read the XMP packet into the
% stream, finally attach the stream as the main XMP.

% The <LineLength> below must be replaced with a value larger than the
% longest line in the XMP packet. There is no safe and general way to
% exactly determine this, the XMP can be modified in place after the
% Postscript is written and could legally all be on one line.

% The overall length of the packet cannot change though. You should set
% the <LineLength> to the lesser of the packet size and 65500. The upper
% limit keeps this within the 64KB limit of PostScript strings.

% The “&&end XML Packet marker&&” comment is significant, it terminates
% the reading of the XMP packet.

CHAPTER 3: Embedding XMP Metadata in Application Files Document formats 52

% First: Create the XMP metadata stream object and say that it is XMP.
[/_objdef {my_metadata_stream_123} /type /stream /OBJ pdfmark
[{my_metadata_stream_123} 2 dict begin

/Type /Metadata def /Subtype /XML def currentdict end /PUT pdfmark

% Second: Read the XMP packet into the stream.
[{my_metadata_stream_123} <LineLength>

(% &&end XMP packet marker&&) metastring_pdfmark

... XMP packet goes here ...

% &&end XMP packet marker&&

% Third: Attach the stream as the main XMP metadata stream.
[{Catalog} {my_metadata_stream_123} /Metadata pdfmark

Traditional PDF metadata and XMP

The discussion here is primarily about explicitly embedding XMP in PostScript and EPS to provide
metadata. However, when Distiller is used the document-level metadata in the PDF file can contain
information that comes from other sources than the XMP embedded in the PostScript. This is metadata
that traditionally went into the PDF document information dictionary, and with the advent of XMP is
replicated in the PDF’s document-level XMP.

There are two other methods for putting metadata in a PostScript file so Distiller will put it in the PDF
document info dictionary and also create and embed an XMP packet for that data in the PDF document.
You can use:

➤ DSC (Document Structuring Conventions) comments. The DSC comments are processed only if DSC
parsing is enabled, that is, only if the job file contains the following line:

/ParseDSCCommentsForDocInfo true

➤ DOCINFO pdfmark command. Information on pdfmark is available from the Distiller application Help
menu, under “pdfmark Guide.”

If more than one of the three possible sources of metadata for the PDF file are present, then a property
value in the document-level XMP is taken from the first of these sources in the PostScript used to create
the PDF that contains the property:

➤ Explicit document-level XMP.

➤ Explicit document info dictionary.

➤ DSC comments.

Because the pdfmark command is more reliable than DSC comments, many applications use it to set
DocInfo properties for a PDF document. The following is an example of PostScript code, created by
FrameMaker, which illustrates the use of the DOCINFO pdfmark operator:

/Creator (FrameMaker 6.0)
/CreationDate (D:20020214144924)
/ModDate (D:20020215142701)
/Author(John Doe)
/Title (Processing XMP Data in EPS Files)
/Subject (XMP)
/Keywords (XMP, pdfmark)
/DOCINFO pdfmark

CHAPTER 3: Embedding XMP Metadata in Application Files Document formats 53

Distiller will place these seven properties – plus “Producer” – into the resulting PDF file in two places: the
document information dictionary and document-level Metadata as an XML Packet. The Producer is the
product name, for example “Acrobat Distiller 5.0 (Windows).” It is possible to add other Key/Value pairs to
PDF DocInfo, but they are not added to the document-level Metadata in Distiller 5.0.

Care must be taken if the file might be sent to a PostScript interpreter instead of to Distiller. Some
PostScript interpreters may not recognize the pdfmark command, for example those in older printers.
One way to avoid problems is to conditionally define the pdfmark operator to the “cleartomark”
operator. This is shown in the earlier examples.

Object-level metadata in PostScript

Object-level XMP is written identically for PostScript and EPS.

Metadata streams can be attached to specific objects in a PostScript file using the pdfmark operator. This
is identical to the document-level PostScript method (see “Document-level XMP in PostScript” on
page 48), except that in step 3 the stream containing the XMP metadata is attached to the object. An
example follows showing this for an image:

% ==
% We assume that the XMP stream has been defined as shown earlier. All
% but the third step, defining the stream as a metadata stream. We also
% assume that the image has been defined as {myImage_123}. Again, a
% unique name should be used.

% The third step is replaced with one that associates the XMP metadata
% with the image. Since this must be located after both the image and
% XMP streams, it might not be adjacent to the other XMP parts. See the
% ordering issues discussed in “Ordering of Content”.

% Third: Attach the XMP metadata stream to the image.
[{myImage_123} <</Metadata {my_metadata_stream_123}>> /PUT pdfmark

The approach shown here is compatible with all PostScript devices. That is, no additional changes are
needed to ensure that level 1 devices will properly ignore the XMP beyond those already mentioned, and
Distiller 5 and later will attach the XMP to the associated object in the PDF file.

Although Distiller 5 will attach the XMP to the associated object in the PDF file, the XMP stream in the PDF
will be Flate-compressed. This makes the object XMP packet in the PDF invisible to external packet
scanners. The XMP will be visible to software processing the PDF format and decompressing the stream.
Distiller 6 and later do not compress the XMP packet stream.

UCF (Universal Container Format)

UCF is a general-purpose container technology. As a general container format, UCF collects a related set of
files into a single-file container. UCF can be used to collect files in various document and data formats and
for classes of applications. The single-file container enables easy transport of, management of, and
random access to, the collection.

UCF defines rules for how to represent an abstract collection of files (the “abstract container”) into physical
representation within a Zip archive (the “physical container”). The rules for Zip containers build upon and
are backward compatible with the Zip technology used by Open Document Format (ODF) 1.0. UCF is
designed to provide a set of lightweight constraints on the use of Zip.

CHAPTER 3: Embedding XMP Metadata in Application Files Document formats 54

The position of XMP within UCF is defined in part 3.5 of the specification:

3.5 META-INF

All valid UCF Containers MAY include a directory called “META-INF” at the root level of the container file
system. This directory contains the files specified below that describe the contents, metadata, signatures,
encryption, rights and other information about the contained publication.

Specifically, the META-INF/metadata.xml file contains XMP metadata:

3.5.3 Metadata – META-INF/metadata.xml (Optional)

A file with the reserved name “metadata.xml” within the “META-INF” directory at the root level of the
container file system may appear in a valid UCF container. This file, if present, MUST be used for
container-level metadata. In version 1.0 of OCF, no such container-level metadata is specified.

If the “META-INF/metadata.xml” file exists, its contents MUST be valid XML with namespace-qualified
elements to avoid collision with future versions of OCF that MAY specify a particular grammar and
namespace for elements and attributes within this file.

Adobe-defined formats based on UCF MUST use XMP to specify metadata.

Reference For further information about UCF, see:

http://labs.adobe.com/technologies/mars/?tab:details=1#documentation

http://labs.adobe.com/technologies/mars/?tab:details=1#documentation

 55

4 Handling Native Metadata

There is a generic policy for how XMP handles native metadata, which covers common practices that
should apply to all file formats. However, since application support for XMP long preceded this policy,
there are historic and format specific cases where the generic policy is not followed.

➤ In most file formats there is just one form of native metadata, and the generic policy is presented in
these terms.

➣ The mappings for PDF are discussed in “Native metadata in PDF files” on page 57.

➣ The individual mappings for dynamic media formats are discussed in “Native metadata in
dynamic media formats” on page 59.

➤ The common still-image formats (JPEG, TIFF, and PSD) have multiple forms of native metadata; those
additional complications are described in “Native metadata in digital photography formats” on
page 62, and complete details are given in Chapter 5, “Digital Photography Native Metadata.”

Reconciling metadata in different formats
Key to all native metadata handling is the notion of reconciling the native metadata with the XMP. Native
metadata information can be imported into XMP, and XMP information can be exported to native formats.
The generic policy defines when reconciliation happens and how values are transformed. The intent is to
preserve the most recent and informative metadata, while allowing the use of both old and new
applications.

The basic programming model is that XMP is the only active metadata at runtime:

➤ When a file is opened, all existing metadata is reconciled into XMP. This does not necessarily mean that
data is imported to XMP; an import operation only happens if the native metadata appears to be
newer than the XMP.

➤ The XMP is modified as appropriate while the file is open.

➤ When the file is saved, the relevant XMP is exported to native formats, and both forms are written to
the file.

NOTE: This is a conceptual programming model meant to aid discussion of the issues of policy. The XMP
specification does not require applications that support XMP to follow this specific model.

Text encodings in import and export

It is important to understand text encoding issues before getting into the details of import and export.

The XMP is always written using Unicode, generally UTF-8 although which Unicode does not matter. What
does matter is that Unicode is a single text encoding for all languages. The most recent Unicode standard
defines over a million characters.

Native metadata often uses more restricted encodings such as 7-bit ASCII, ISO Latin-1, or JIS. In many cases
it even uses an ill-defined "local" encoding, the default encoding in effect on a user's machine at any

CHAPTER 4: Handling Native Metadata Reconciling metadata in different formats 56

particular moment. There is usually nothing in a file telling what the local encoding was when the file was
written.

The use of non-Unicode encoding for native metadata means that information can be lost when exporting
XMP to native formats. The text encoding used by the native format might not support some of the
Unicode characters in the XMP. This typically comes across as question marks in the native format for
unsupported characters. Information would be lost from the Unicode if that native format were then
imported back to the XMP, downgrading the XMP value.

The XMP metadata can also be corrupted by interactions with locally encoded native metadata. Consider
the case of a file saved in Japan using JIS for the local encoding, that is then sent to the US, where Latin-1 is
the local encoding. Suppose, for example, that the file is first processed in the US by an application that
does not understand XMP and makes the native metadata appear newer than the XMP. If the file is then
opened in a XMP-aware application, the native metadata is imported to the XMP. At this time, the JIS
values from Japan are interpreted as Latin-1, then converted to Unicode and placed in the XMP. The result
is complete garbage (sometimes called “mojibake”) in the XMP, which is then exported back to the native
format when the file is saved.

The native-metadata reconciliation policies are designed to minimize these problems.

Native metadata export policy

An XMP export operation must create all appropriate native metadata formats, even if they did not
previously exist in the file. It should delete any existing native-format items if their corresponding XMP
properties are not present, but must not alter any native-format items that do not correspond to XMP
properties.

There are exceptions to this policy; some metadata formats contain explicit marking for what to do when a
file is modified. The mark usually has at least two forms:

➤ If you do not understand this item, delete it when updating the file content (that is, the described data,
not the metadata).

➤ If you do not understand this item, delete it when doing anything to the file.

An export operation can include specific property value conversions, such as those for text encodings or
date-time formats. Numeric values, in particular, must often be converted between the XMP text
representation and format-specific binary representations.

When a file is saved, the XMP is first exported to the native format, then an overall MD5 signature is
computed for the native metadata. This signature is saved in the XMP and used later to detect changes to
the native metadata.

The exact input for the signature must be well defined for each file format. It should be convenient and
efficient to compute the signature. For example, the entire legacy IPTC (IIM) in an image file is a reasonably
small contiguous block, so the MD5 signature is computed for the entire block. The Exif native metadata is
a distributed and unordered TIFF stream, so that signature is computed using just the relevant metadata
values.

Native metadata import policy

The decision of whether to import native metadata is based on both a digital signature and value
comparison. When a file is opened, a new signature is computed for the native metadata in the file. If this

CHAPTER 4: Handling Native Metadata Native metadata in PDF files 57

matches the signature saved in the XMP, then the native metadata is unchanged and the XMP can be
imported as it is.

This new signature is computed based on the native metadata items that the current application would
import, without regard to what items the previous application exported. If these sets differ, the signatures
do not match and the next step adequately protects the XMP.

If the overall signatures do not match then something in the native metadata has changed and the XMP
might need to be updated. In this case an import decision must be made on each native item by value
comparison. The XMP is used to compute an expected native value; for example one that includes a text
encoding change. This expected value is compared to the native value in the file. If they differ, the native
item has changed and needs to be imported to the XMP.

This extra step prevents a downgraded value in an unchanged native item from clobbering the XMP when
the overall signature changes because of some other native item. The extra step does not prevent the
corruption of XMP due to an import after a shift in local encoding. In that case, the expected native value
computed from the XMP would use the new local encoding; it would certainly differ from even an
unchanged native value, and would cause an erroneous import.

Users can prevent this corruption by saving the file with an XMP- aware application before transfer, then
opening and resaving a file in an XMP-aware application after transfer. Do not use any applications that
might change just the native metadata in between. When the file is opened, the native signature will
match, so no imports will happen. When the file is resaved, the new local encoding is used, so that the
extra value check will work subsequently.

If a native item is missing and the corresponding XMP item is present, the import operation should not
delete the XMP item. This is a pragmatic choice to accommodate a few applications that edit only the XMP.

Native metadata in PDF files
PDF metadata is stored with a document in the Info dictionary. XMP metadata properties are mapped to
defined document Info dictionary keys.

In PDF 1.5, properties are mapped as follows:

PDF Document
Info key

XMP metadata
property Mapping notes

Title dc:title The Title key maps to the first of the alternatives given in
the dc:title property.

Author dc:creator The Author key maps to the first of the creators listed in the
dc:creator field.

Alternatively (available by user action in the Acrobat 7 UI),
maps to a concatenated list of the creators listed in the
dc:creator field separated by a standard separator
character such as semicolon.

Subject dc:description The Subject key maps to the first of the alternatives given
in the dc:description property.

CHAPTER 4: Handling Native Metadata Native metadata in PDF files 58

User-defined keys

In addition to these correspondences, PDF defines an XMP schema (pdfx:) dedicated to representing any
user-defined keys present in the Info dictionary. Because the names of such properties can contain
arbitrary Unicode characters, and XMP names are constrained to be XML Name characters. The following
escape convention applies in mapping between the PDF names and the XMP names:

➤ Characters that are not XML Name characters are represented by the character ROMAN NUMERAL TEN
THOUSAND followed by four characters from among the hexadecimal digits; these four characters
spell out the Unicode code point of the character being escaped.

➤ Characters having Unicode code points beyond the Basic Multilingual plane have their high, then low,
surrogate parts spelled out in this fashion by two consecutive five-character sequences.

Resolving metadata conflicts

If a PDF document contains both an Info dictionary and document-level XMP metadata, it is possible for
the representations to get out of synchronization (for example, if Info values are set by software that is
unaware of the XMP representation). In order to reconcile such differences, Adobe Acrobat compares the
time given by the Info ModDate value with the time given by the xmp:MetadataDate value.

➤ If the Info value is more recent, all the Info dictionary entries supersede their corresponding XMP
properties

➤ Otherwise, all the XMP values are assumed to be in force.

Keywords pdf:Keywords The XMP properties dc:subject and pdf:Keywords have
historically been separate. In Acrobat 7, Adobe allows user
intervention to set them to corresponding values, where
the value in the PDF schema (and in the DocInfo) is set to a
delimiter-separated concatenation of the bag of values
found in the dc:subject value.

Creator xmp:CreatorTool

Producer pdf:Producer

CreationDate
ModDate

xmp:CreateDate
xmp:ModifyDate

Info dictionary dates are in ISO/IEC 8824 format, XMP dates
are in ISO 8601 format.

Trapped pdf:Trapped The Trapped key takes name values from a controlled set.
The text values used for the pdf:Trapped property are the
spellings of the corresponding names.

PDF Document
Info key

XMP metadata
property Mapping notes

CHAPTER 4: Handling Native Metadata Native metadata in dynamic media formats 59

Native metadata in dynamic media formats
The following dynamic media formats can contain native metadata which must be reconciled with XMP:

➤ Native metadata in ASF (WMA, WMV)

➤ Native metadata in AVI

➤ Native metadata in MP3

➤ Native metadata in WAV

Native metadata in these formats is generally more straightforward than for still image formats; the
formats and details of individual properties are both discussed here.

Native metadata in ASF (WMA, WMV)

The ASF Header Object contains several nested objects that have native metadata fields mapped to XMP:

All native metadata strings are presumed to be little endian UTF-16. The value contains no U+FEFF BOM.
Values written to the native format should have a 16-bit NULL terminator. The terminator should be
treated as optional when importing to XMP, and stripped if present (not propagated to XMP).

The ASF specification says that the Copyright and License URL values must be ASCII. They should be taken
as is when importing to XMP, doing a normal UTF-16 to UTF-8 conversion. When exporting from XMP each
byte that is not normal "display" ASCII should be replaced with '?'. The accepted range is 0x21..0x7E.

If an object has to be created to hold a native item, default values (generally 0) should be written for
unknown portions of the object.

An MD5 digest of the native metadata is kept in the XMP as asf:NativeDigest. The asf: namespace URI
is "http://ns.adobe.com/asf/1.0/". Only the MD5 digest value should be used for ASF comparisons.

The MD5 digest is computed using the value of the native items, accumulated in the order listed above.
The digest is written as an optional series of comma-separated small integers, a semicolon, and a
32-character hexadecimal string for the actual digest value. A leading semicolon is present when the initial

ASF XMP

File Properties Object, Creation Date xmp:CreateDate

This property is ignored, neither imported nor exported, if the Broadcast flag is set. The ASF
Creation Date is a UTC time. Recommended policy is to add an appropriate time zone offset in the
XMP value, using the local time zone as a default.

Content Description Object, Title dc:title['x-default']

Content Description Object, Author dc:creator[*]

The native value is read as a single string of semicolon separated values, mapped to the dc:creator
array in XMP.

Content Description Object, Copyright dc:rights['x-default']

Content Description Object, Description dc:description['x-default']

Content Branding Object, Copyright URL xmpRights:WebStatement

http://ns.adobe.com/asf/1.0/

CHAPTER 4: Handling Native Metadata Native metadata in dynamic media formats 60

small integers are omitted. (The small integers are C enum values indicating the native items actually
present when written. They are ignored since this is not in keeping with preferred native-metadata policy.)

Native metadata in AVI

AVI files can have four pieces of reconciled native metadata in a LIST/Tdat container chunk:

The native values are all written as UTF-8.

There is currently no digest in AVI to detect changes in the native metadata.

Native metadata in MP3

The following native ID3 frames are mapped to XMP:

A known genre should be mapped to XMP as the textual genre name, not the raw number string.

For maximum compatibility, text values in the native metadata frames should be written as true Latin-1 or
as little-endian UTF-16. For example, some versions of the Windows Media Player ignore the U+FEFF BOM
and presume little endian UTF-16.

AVI XMP

tc_O dm:startTimecode/dm:timeValue

tc_A dm:altTimecode/dm:timeValue

rn_O dm:tapeName

rn_A dm:altTapeName

ID3 XMP

COMM dm:logComment

TALB dm:album

TCON dm:genre

TIT2 dc:title["x-default"]

TPE1 dm:artist

TRCK dc:trackNumber

TYER, TDAT, TIM xmp:CreateDate (for ID3v2.3)

TDRC xmp:CreateDate (for ID3v2.4)

CHAPTER 4: Handling Native Metadata Native metadata in dynamic media formats 61

Native metadata in MPEG-4

MPEG-4 can contain native metadata, which can require reconciliation with the XMP. Metadata can occur
in several boxes, as defined by in ISO 14496-12:

moov/mvhd
moov/udta/cprt
moov/trak/tkhd
moov/trak/udta/cprt

An MPEG-4 file must contain exactly one moov box, which must contain exactly one nested mvhd box; the
mvhd box provides information about the file as a whole, including creation and modification times,
duration, and timescale. The mvhd box is not a container; it is a fixed size record defined in ISO 14496-12
section 8.3.

The moov box can optionally contain at most one udta box, which may optionally contain any number of
cprt boxes. A cprt box contains a copyright for the file as a whole. Each has a language code and
copyright string.

The moov box also contains one or more trak boxes, each of which contains exactly one tkhd box,
optionally at most one udta box, and any number of udta/cprt boxes. These boxes contain similar
copyright information for the individual tracks.

Reconciling native metadata with XMP

The XMP is reconciled with native metadata from the moov-level mvhd and udta/cprt boxes. The native
values are imported into the XMP as needed. Individual native items are either always updated when the
XMP is updated, or are never updated from the XMP.

➤ The mvhd creation_time and modification_time are mapped to xmp:CreateDate and
xmp:ModifyDate respectively. The native dates are always be updated when updating the XMP.

➤ The mvhd timescale and duration are used to compute a value for xmpDM:duration, with enough
fractional digits to cover the time scale; for example, a timescale of 60 (1/60th of a second)
corresponds to two fractional digits (1/100th of a second) in the XMP. The mvhd timescale and
duration are never updated from the XMP.

➤ The cprt values are mapped to items in the dc:rights LangAlt array. The native values contain an
encoded form of an ISO-639-2 language code. XMP uses RFC 3066 codes, which typically include an
ISO-639-2 language code plus an ISO 3166 country code.

Importing native metadata values

Native values are imported into the XMP as needed, as determined from an MD5 digest in the
xmp:NativeDigests/xmp:MPEG-4 property in the XMP.

➤ If no XMP is present, initial XMP is constructed by importing the native metadata.

➤ If XMP is present but lacks the MPEG-4 digest, existing XMP values are kept and new ones added from
the native. (This is for the benefit of XMP writers who fail to write the digest.)

➤ If XMP is present with the MPEG-4 digest, a 128-bit MD5 digest is computed from the full data portion
of the mvhd box, and the full data portion of all moov-level cprt boxes. The mvhd data is added first,
followed by the cprt boxes in file order. This digest is converted to an ASCII hexadecimal string using
capital A-F, with no internal separators. If the new digest differs from the old digest, the native
metadata is imported again.

CHAPTER 4: Handling Native Metadata Native metadata in digital photography formats 62

A new digest is computed and saved whenever the XMP is updated.

Native metadata in WAV

Native metadata in a LIST/INFO container chunk is defined by "Multimedia Programming Interface and
Data Specifications 1.0". This information is also contained in the Exif 2.2 specification, in section 5.6 for
"Exif audio files". The values are specified as null terminated ASCII strings.

For WAV files, this subset of the LIST/INFO native metadata is reconciled with XMP:

All of the WAV native metadata is stored using local encoding, not necessarily ASCII. The file contains no
indication of the local encoding in use.

There is currently no digest in WAV to detect changes in the native metadata.

Native metadata in digital photography formats
Finding and interpreting the metadata embedded in PSD, TIFF, and JPEG files is complicated by the fact
that all three file formats contain the same kinds of metadata (XMP, TIFF, Exif, and IPTC), but store it slightly
differently.

For example, all of the kinds of metadata can be contained in Photoshop Image Resources (PSIRs), and all
three file formats (PSD, TIFF, and JPEG) can contain PSIRs. However, the specific contents of the PSIRs are
different when contained in different image file formats. Each type of metadata is stored inside the PSIR for
some file formats, and separately for others.

Similarly, TIFF contains both TIFF-specific and Exif metadata, which is stored slightly differently in the TIFF
format itself than in the other formats.

This section provides an overview of the storage similarities and differences. The specific details of each
native metadata format, and the specific properties that are present in different formats and need to be
reconciled, are discussed in Chapter 5, “Digital Photography Native Metadata.”

The following figure illustrates how metadata is stored in PSD, TIFF, and JPEG files, and what the PSIR
contains in each case.

➤ In a TIFF file, the arrows in the diagram indicate offsets that point to the data; the data itself resides
elsewhere in the file.

WAV XMP

IART dm:artist

ICMT dm:logComment

ICOP dc:rights["x-default"]

ICRD xmp:CreateDate

IENG dm:engineer

IGNR dm:genre

INAM dm:album

ISFT xmp:CreatorTool

CHAPTER 4: Handling Native Metadata Native metadata in digital photography formats 63

➤ A Photoshop image resource (PSIR) actually contains the data pointed to by the arrow in the diagram.

➤ In JPEG, the APPn sections also contain the data pointed to by the arrow.

Notice these points:

➤ A PSD file contains PSIRs, with one image resource for each type of metadata.

➣ The resource for Exif/TIFF metadata points to a TIFF IFD0. The IFD contains the TIFF metadata tags
and an Exif tag that points to the Exif metadata.

➤ TIFF, JPEG, and PSIRs all have direct pointers to XMP metadata.

➣ The PSIR that appears within TIFF and JPEG does not include an XMP resource, since those formats
have direct pointers to the XMP.

➤ PSD and TIFF point directly to the IPTC metadata, but JPEG contains a PSIR that contains the IPTC.

➣ TIFF also contains a PSIR, which might contain a duplicate of the IPTC that is pointed to directly by
its own tag.

➤ TIFF contains a tag that points directly to the Exif metadata; however, JPEG (like PSD) has a marker that
points to a TIFF IFD0. The IFD contains the TIFF metadata tags and an Exif tag that points to the Exif
metadata.

CHAPTER 4: Handling Native Metadata Native metadata in digital photography formats 64

Reconciliation issues

This section clarifies specific issues of reconciling native metadata with XMP for digital photography
formats.

Prior to the advent of XMP, the reconciliation issues among the native forms of metadata were relatively
small. The text encodings were the same (almost all local OS), and there was little duplication. The entire
IPTC block was duplicated in TIFF files (tag 33723 and image resource 1028), and in the ANPA resource for
all Mac OS files. Only 4 individual properties appeared in multiple forms (listed here by their XMP names):

IPTC is the one common form for these 4 properties, and the IPTC data structures can be used as the
primary storage. The other forms can then be incorporated into the IPTC storage as necessary. Adobe
practice has been to collate the IPTC while reading a file, using a priority scheme to decide whether to
incorporate various sources of metadata. The priorities among non-XMP formats are:

➤ If IPTC from TIFF tag 33723 is present, use it.

➤ If TIFF text tags 270, 315, 33432 are present, use them (except for PSD files).

➤ If IPTC from PSIR 1028 is present, use it.

Here is the priority scheme as pseudocode:

if IPTC wins
if TIFF digest is missing or differs then import TIFF tags
if Exif digest is missing or differs then import Exif tags
if IPTC digest is missing or differs then import IPTC DataSets

else
if IPTC digest is missing or differs then import IPTC DataSets
if TIFF digest is missing or differs then import TIFF tags
if Exif digest is missing or differs then import Exif tags

endif

Notice that there are no Exif properties among those of concern; there are no conflicts, and hence no
ordering constraints, between TIFF and Exif.

Encoding of text in metadata

The encoding of text strings varies among the metadata formats, and Adobe practice does not always
precisely follow the relevant specifications. The only easy case is XMP, which always uses Unicode;
specifically UTF-8 for PSD, TIFF, JPEG, JPEG-2000, GIF, PNG, DNG, and camera raw files.

dc:description["x-default"] IPTC 2:120, Caption
TIFF 270, ImageDescription
Mac OS pnot resource Desc item

dc:creator IPTC 2:80, By-line
TIFF 315, Artist

dc:rights["x-default"] IPTC 2:116, Copyright Notice
TIFF 33432, Copyright

dc:subject IPTC 2:25, Keyword
Mac OS pnot resource KeyW item

CHAPTER 4: Handling Native Metadata Native metadata in digital photography formats 65

The Mac OS STR# and TEXT file resources use local OS single-byte encoding, with no indication in the file of
what that is.

Photoshop image resources have one active and two obsolete standalone strings. These all use local OS
single-byte encoding, with no indication in the file of what that is. The active string is image resource 1035,
copyright information URL. The obsolete strings are 1008, old caption, and 1020, old print caption.

The major native standards specify 7-bit ASCII for the most part:

Photoshop takes liberties with the interpretation of ASCII and ISO 646. Through version 7, it uses local OS
single-byte (8-bit) encoding where TIFF/Exif and IPTC specify 7-bit ASCII or ISO 646. There is no indication
in the file of what this encoding is. Photoshop 9 continues to use local OS single-byte (8-bit) encoding for
IPTC, but uses UTF-8 in TIFF/Exif for tags of type ASCII.

Photoshop also ignores the Exif admonition to use the UserComment tag instead of ImageDescription
when the value contains non-ASCII characters. Photoshop always writes ImageDescription, never
UserComment.

TIFF/ Exif All but 3 string values have type ASCII, which means 7-bit ASCII. The remaining 3 have
directly indicated encoding:

UserComment (37510)
GPSProcessingMethod (27)
GPSAreaInformation (28).

IPTC All values are written as ISO 646, which is 7-bit ASCII with national variants.

 66

5 Digital Photography Native Metadata

This chapter discusses how native metadata is stored in the various still-image formats (“Metadata storage
in native formats” on page 66), and provides details of the properties that are equivalent in different
formats, and how they are mapped to XMP (“Reconciling metadata properties” on page 70).

Metadata storage in native formats
This section provides details of the native metadata formats used in the common digital photography
formats (PSD, JPEG, and TIFF). Each of these file formats can contain metadata in any of the following
formats, in addition to XMP:

➤ “TIFF metadata” on page 66

➤ “Exif metadata” on page 66

➤ “Photoshop image resources” on page 67

➤ “IPTC (IIM) metadata” on page 68

For details of the specific properties that need to be reconciled among metadata formats, see “Reconciling
metadata properties” on page 70.

TIFF metadata

Modification of TIFF files must be done with care to preserve the linked structure. The Exif and GPS IFD
pointers (see “Exif metadata” on page 66) illustrate the potential problem of detecting implicit links. These
tags have type LONG and a count of 1, the fact that they are links is not explicit. Nothing prevents new
versions of Exif from adding similar IFD pointers, or applications from adding similar private tags. Updates
to TIFF files should be done in one of these ways:

➤ Rewrite the entire file, output only those tags that are explicitly understood.

➤ Use an update by append approach. Append all new or resized IFDs and values to the end of the file
and adjust known offsets to them.

➤ The TIFF specification does not allow tags to be repeated in an IFD. You should write tags in order, with
no duplicates. A robust TIFF reader, however, should tolerate tags that are out of order. If duplicates do
occur, Adobe practice is to keep the last encountered tag.

For information on specific metadata tags, see “TIFF and Exif tags for metadata” on page 73.

Exif metadata

The Exif image interchange format defines a set of TIFF tags that describe photographic images, and is
widely used by digital cameras. Exif metadata is found in TIFF, JPEG, and PSD files.

According to Exif conventions, the first IFD (IFD0) describes the primary image, the next IFD (IFD1)
describes thumbnails. It allows either uncompressed images based upon TIFF, or compressed images

CHAPTER 5: Digital Photography Native Metadata Metadata storage in native formats 67

based upon JPEG. In fact, the IFDs may or may not contain image data, depending on whether they are in
a TIFF or a JPEG file.

The additional information defined by Exif is located through these TIFF tags, regardless of the
surrounding file format:

IMPORTANT: Even though JPEG is a big-endian format overall, the TIFF within the Exif APP1 marker segment
can be little-endian. Readers must recognize and honor the 8-byte TIFF header.

For information on specific metadata tags, see “TIFF and Exif tags for metadata” on page 73.

Reference Official documentation for the Exif file format is available from:

http://www.exif.org/Exif2-2.PDF

Photoshop image resources

Photoshop image resources are used in PSD, TIFF, and JPEG files. The contents differ in the different
contexts:

➤ The image resource section is a native part of the PSD file format, and consists of a 4-byte length value,
followed by a sequence of image resources, which include both non-metadata resources and all of the
metadata (XMP, TIFF/Exif, and IPTC).

➤ JPEG and TIFF file formats contain just the sequence of image resources; the overall length is part of
the containing file structure.

➣ In TIFF, the resource pointer is a TIFF tag 34377 (0x8649). It points to sequence of image resources
that contain non-metadata resource data, and can contain duplicate IPTC metadata (which also
has its own TIFF tag). The image resources do not contain XMP or TIFF/Exif metadata, which have
their own TIFF tags.

➣ In JPEG, the resource is contained in an APP13 marker segment with a signature string of
"Photoshop 3.0". It contains a sequence of image resources that contain non-metadata resource
data and IPTC metadata. The image resources do not contain XMP or TIFF/Exif metadata, which
have their own markers.

Tag Hex Name

34665 0x8769 Exif IFD pointer ➤ In a TIFF file, IFD0 contains tags of this type, which point to
subsidiary IFDs that contain tags that point to the data blocks.

➤ In PSD files, an image resource contains these IFDs, which point
directly to the data. The data is contained within the PSIR.

➤ In JPEG files, an APP1marker contains these IFDs, which point
directly to the data. The data is contained within the marker.

34853 0x8825 GPS IFD pointer

http://www.exif.org/Exif2-2.PDF

CHAPTER 5: Digital Photography Native Metadata Metadata storage in native formats 68

Each Photoshop image resource has the following form:

The image resources need not be sorted in any way. The resource name and data are followed as necessary
by a 0x00 pad byte to make the total length be even; that is, to make the following component begin on
an even offset. The explicit length of the name or resource data does not include this pad.

This padding is relative to the image resource section, not necessarily to the overall file. For example, the
image resources in a JPEG file might begin on an odd file offset because JPEG allows marker segments to
begin on any offset. Readers and writers must use care to round local image resource relative offsets, not
base file relative offsets.

The image resource ID and data length must always be written as big-endian, even when the image
resources are embedded within little-endian TIFF.

For information on specific metadata properties in image resources, see “Photoshop image resources for
metadata” on page 70.

IPTC (IIM) metadata

The International Press Telecommunications Council (IPTC) and NAA (Newspaper Association of America)
have together defined the Information Interchange Model (IIM) that has come to be known as "IPTC
metadata."

IPTC metadata is stored as a sequence of DataSets. The DataSets are logically grouped into Records. A
DataSet is referenced as record:dataset; for example, DataSet 2:50 is DataSet 50 of Record 2. DataSets
can be stored in a standard or extended form.

➤ The structure of a standard DataSet is:

Offset Length Description

0 4 Signature, the 4 ASCII characters "8BIM"

4 2 Resource ID, a 16-bit big-endian unsigned integer. The XMP resource ID is 1060 in
PSD files.

6 — Resource name as a Pascal string.

— 4 Length of the resource data, a 32-bit big-endian unsigned integer

— — Resource data

Offset Length Description

0 1 Tag marker, 0x1C

1 1 Record number

2 1 DataSet number

3 2 Data length, big-endian, range 0..32767

5 — Data

CHAPTER 5: Digital Photography Native Metadata Metadata storage in native formats 69

The structure of an extended DataSet is:

The DataSets must be clustered by Record number, and the clusters written in ascending Record order. The
DataSets within a Record cluster may be in any order.

The 16-bit data length field is always stored big-endian, on all platforms, even when the IPTC is placed
within little-endian TIFF.

For information on specific metadata properties in DataSets, see “IPTC DataSets for metadata” on page 71.

Reference The IIM specification can be found at:

http://www.iptc.org/IIM/

The more recent IPTC specification for metadata that is only in XMP, and not in the IIM structure, has no
reconciliation issues and is not relevant to this discussion.

Offset Length Description

0 1 Tag marker, 0x1C

1 1 Record number

2 1 DataSet number

3 2 “Data length” length, the number of bytes in the variable-length “Data length”
portion at offset 5. Big-endian, ORed with 0x8000

5 — Data length, the number of bytes in the Data portion following. Big-endian,
variable length as specified in preceding length value.

— — Data

http://www.iptc.org/IIM/

CHAPTER 5: Digital Photography Native Metadata Reconciling metadata properties 70

Reconciling metadata properties
This section provides details about individual native metadata properties in native formats and how they
are mapped to XMP.

➤ “Photoshop image resources for metadata” on page 70

➤ “IPTC DataSets for metadata” on page 71

➤ “TIFF and Exif tags for metadata” on page 73

Collections of metadata (for example, XMP or IPTC) are mentioned only where they are intermingled with
individual properties. For example, the first table below shows this intermingling of individual properties
in Photoshop image resources 1034 and 1035, and collections in 1028, 1058, and 1060.

Photoshop image resources for metadata

There are several Photoshop image resources of interest as metadata:

ID Hex Description XMP mapping Notes

1028 0x404 IPTC metadata

1034 0x40A Copyright flag as a 0/1
Boolean

xmpRights:Marked When importing, set the
XMP to "True" if 1034 has
length 1 and a non-zero
value, otherwise leave the
XMP alone.

When exporting, set 1034 to
0/1 if the XMP is present and
True/False, else do not set
1034.

1035 0x40B Text string for a
copyright information
URL

xmpRights:WebStatement The image resource is
treated as locally encoded
text.

1058 0x422 Standard Exif (added in
Photoshop 7)

In the standard TIFF format,
including the initial 8 byte
header. Even though
Photoshop is a big-endian
format overall, the TIFF
within image resource 1058
can be little-endian. Readers
must recognize and honor
the 8 byte TIFF header.

1060 0x424 XMP (added in
Photoshop 7)

1061 0x425 MD5 digest of the IPTC
(added in Photoshop 7)

The 16-byte binary value is
the MD5 digest of the
contents of PSIR 1028.

CHAPTER 5: Digital Photography Native Metadata Reconciling metadata properties 71

Some very old versions of Photoshop wrote image resource 1008 (0x3F0) or 1020 (0x3FC), but not both.
These are now considered obsolete; both were dropped prior to Photoshop 6. The current Photoshop SDK
does not even contain type information for 1020. Both of these are captions, rendered as Pascal strings;
they are alternative forms corresponding to the IPTC Caption in DataSet 2:120. They are never exported to
XMP.

IPTC DataSets for metadata

Unless otherwise noted, the data in all DataSets of interest as metadata are graphic characters plus spaces
from ISO 646. Which is essentially 7-bit ASCII overlain with a variety of national variants. These variants are
all still within the 7-bit range. The national variant in use at any time is not specified and not detectable
from the data. Graphic characters are in the range 0x21..0x7F, space (0x20) is not considered a graphic
character (hence the “plus spaces” above). Alphabetic characters are the English alphabet in ASCII, A..Z
(0x41..0x5A) and a..z (0x61..0x7A).

Unless otherwise noted, a given DataSet of interest as metadata can appear at most once. DataSets that
can be repeated are marked in the following table with an X in the Repeat column. Those that can be
repeated need not be contiguous.

A robust reader should tolerate improper repeats in input. Adobe practice depends on the mapping to
XMP:

➤ A non-repeatable DataSet is always mapped to a simple XMP property; if there is an improper repeat,
the last value encountered is kept.

➤ For a repeatable DataSet that is mapped to a simple XMP property, the last value encountered is kept.
The XMP mappings for the repeatable DataSets 2:85 (photoshop:AuthorsPosition) and 2:122
(photoshop:CaptionWriter) are simple XMP properties, not arrays.

➣ The DataSet 2:80 is repeatable, but is mapped to only the first item in the dc:creator array. It is
treated as if it were mapped to a simple property. On import, only the last value is kept. On export
from XMP, only the first item in the XMP dc:creator array is output as a 2:80 DataSet.

➤ For a repeatable DataSet that is mapped to an XMP array, all repeated values are both imported and
exported as separate array items. An example is DataSet 2:25 (dc:subject array).

It is also Adobe practice to keep all of a value when importing to XMP, even if the value is larger than
allowed (as shown in the following table). When exporting from XMP, large values are truncated to the
allowed size.

The IPTC DataSets of interest as metadata are:

ID Hex Name Repeat Description

2:5 0x0205 Object Name (title), maximum 64 bytes

2:10 0x020A Urgency one ASCII digit, '1'..'8'

2:15 0x020F Category alphabetic characters, maximum 3 bytes

2:20 0x0214 Supplemental Category X maximum 32 bytes each

2:25 0x0219 Keywords X maximum 64 bytes each

2:40 0x0228 Special Instructions maximum 256 bytes

CHAPTER 5: Digital Photography Native Metadata Reconciling metadata properties 72

The IPTC DataSet mappings to XMP are shown below. The namespace URIs and other details are in the
XMP Specification Part 2, Standard Schemas. The notation ns:array["x-default"] means the item in the
ns:array language alternative whose xml:lang qualifier has the value "x-default".

2:55 0x0237 Date Created 8 ASCII digits as CCYYMMDD, 00 for unknown
parts

2:80 0x0250 By-line X maximum 32 bytes each

2:85 0x0255 By-line Title X maximum 32 bytes each

2:90 0x025A City maximum 32 bytes

2:95 0x025F Province/State maximum 32 bytes

2:101 0x0265 Country/Primary
Location Name

maximum 64 bytes

2:103 0x0267 Original Transmission
Reference

maximum 32 bytes

2:105 0x0269 Headline maximum 256 bytes

2:110 0x026E Credit maximum 32 bytes

2:115 0x0273 Source maximum 32 bytes

2:116 0x0274 Copyright Notice maximum 128 bytes

2:120 0x0278 Caption graphic characters, spaces, CR, LF, maximum
2000 bytes

2:122 0x027A Writer X maximum 32 bytes each

ID XMP mapping

2:4 Iptc4xmpCore:IntellectualGenre

2:5 dc:title["x-default"]

2:10 photoshop:Urgency

(This is incorrectly given as 2:9 in the IPTC Core 1.0 specification.)

2:12 iptc4xmpCore:SubjectCode

2:15 photoshop:Category

2:20 photoshop:SupplementalCategories (gathered as an unordered array)

2:25 dc:subject (gathered as an unordered array)

2:40 photoshop:Instructions

2:55,
2:60

photoshop:DateCreated

Reformatted as ISO 8601, which has both a date and a time; 2:55 is just a date; 2:60 is included
for the time portion, if present.

2:80 dc:creator[1]

CHAPTER 5: Digital Photography Native Metadata Reconciling metadata properties 73

TIFF and Exif tags for metadata

The IFDs used in TIFF and Exif can contain a large number of tags that are of interest as metadata. All but 5
of these tags are for individual metadata properties. The other 5 are for subsidiary IFDs or blocks of
metadata in another format; these 5 tags must appear in the TIFF first (0th) IFD:

For the most part, the tags in the TIFF 0th IFD are mapped to XMP properties in the tiff: namespace, and
the tags in the Exif and GPS IFDs are mapped to XMP properties in the exif: namespace. In these cases
the XMP property name is the tag name show below.

The following TIFF tags have mappings that do not follow the general rules. (The notation
ns:array["x-default"] means the item in the ns:array language alternative whose xml:lang qualifier
has the value "x-default".)

2:85 photoshop:AuthorsPosition

2:90 photoshop:City

2:92 iptc4xmpCore:Location

2:95 photoshop:State

2:100 iptc4xmpCore:CountryCode

2:101 photoshop:Country

2:103 photoshop:TransmissionReference

2:105 photoshop:Headline

2:110 photoshop:Credit

2:115 photoshop:Source

2:116 dc:rights["x-default"]

2:120 dc:description["x-default"]

2:122 photoshop:CaptionWriter

Tag Hex Usage

700 0x2BC XMP

33723 0x83BB IPTC DataSets

34377 0x8649 Photoshop image resources

34665 0x8769 Exif IFD offset

34853 0x8825 GPS IFD offset

Tag Name XMP mapping

270 ImageDescription dc:description["x-default"]

CHAPTER 5: Digital Photography Native Metadata Reconciling metadata properties 74

ASCII tags in TIFF can have embedded NULLs to separate individual internal strings. Adobe practice is to
process ASCII tags to the first NULL, dropping the rest.

➤ The individual strings in tag 315, Artist, should be mapped to separate items in the dc:creator array.
Adobe applications map only to the first item of the dc:creator array on input, and write only the
first item on output.

➤ Adobe applications map only the first string in tags 270, ImageDescription, and 33432, Copyright.

The TIFF specification also has this to say about tag 315, Artist:

This tag records the name of the camera owner, photographer or image creator. The detailed format is not
specified, but it is recommended that the information be written as in the example below for ease of
Interoperability. When the field is left blank, it is treated as unknown. Ex."Camera owner, John Smith;
Photographer, Michael Brown; Image creator, Ken James"

The XMP mapping does not attempt to recognize this informal separation of Artist names.

The TIFF specification has this to say about tag 33432, Copyright:

In this standard the tag is used to indicate both the photographer and editor copyrights. It is the copyright
notice of the person or organization claiming rights to the image. The Interoperability copyright statement
including date and rights should be written in this field; for example, "Copyright, John Smith, 19xx. All rights
reserved." In this standard the field records both the photographer and editor copyrights, with each
recorded in a separate part of the statement. When there is a clear distinction between the photographer
and editor copyrights, these are to be written in the order of photographer followed by editor copyright,
separated by NULL (in this case, since the statement also ends with a NULL, there are two NULL codes) (see
example 1). When only the photographer copyright is given, it is terminated by one NULL code (see example
2). When only the editor copyright is given, the photographer copyright part consists of one space followed
by a terminating NULL code, then the editor copyright is given (see example 3). When the field is left blank,
it is treated as unknown. Ex. 1) When both the photographer copyright and editor copyright are given.
Photographer copyright + NULL[00.H] + editor copyright + NULL[00.H] Ex. 2) When only the photographer
copyright is given. Photographer copyright + NULL[00.H] Ex. 3) When only the editor copyright is given.
Space[20.H]+ NULL[00.H] + editor copyright + NULL[00.H]

It is Adobe practice to process ASCII tags only to the first NULL, not recognizing the special rules for tag
33432. Adobe applications read to the first NULL and write a single logical string.

The following Exif and GPS tags are not mapped directly to XMP, but are combined with others:

305 Software xmp:CreatorTool

306 DateTime xmp:ModifyDate

315 Artist dc:creator[*]

33432 Copyright dc:rights["x-default"]

Tag Name Combined with

37520 SubSecTime 306, tiff:DateTime

37521 SubSecTimeOriginal 36867, exif:DateTimeOriginal

37522 SubSecTimeDigitized 36868, exif:DateTimeDigitized

CHAPTER 5: Digital Photography Native Metadata Reconciling metadata properties 75

Most TIFF and Exif tags with text values are of type ASCII. A few have an UNDEFINED physical type, but
actually contain generally well defined text with flexible encoding. The value includes a header defining
the encoding of the subsequent text. These tags are:

The encoding header is the first 8 bytes of the tag value, an ASCII string will NULL padding. The remainder
of the tag value is the encoded text, without NULL termination. (And thus without the concept of multiple
internal strings that ASCII tags have.) The encodings are:

The Exif specification does not mention whether the UTF-16 form should be big or little-endian. A
reasonable presumption is to follow the ordering given in the TIFF header. The Exif specification says that
UserComment should be used instead of ImageDescription for non-ASCII text. The XMP mapping does not
follow this recommendation.

Most of the TIFF, Exif, and GPS tags that are mapped to XMP are considered read-only in the XMP. Edits to
the XMP value should not be allowed, modified XMP values should not be written back to the native tags.
The only writeback tags are:

1 GPSLatitudeRef 2, exif:GPSLatitude

3 GPSLongitudeRef 4, exif:GPSLongitude

29 GPSDateStamp 7, exif:GPSTimeStamp

19 GPSDestLatitudeRef 20, exif:GPSDestLatitude

21 GPSDestLongitudeRef 22, exif:GPSDestLongitude

37510 UserComment

27 GPSProcessingMethod

28 GPSAreaInformation

"ASCII\0\0\0” ISO 646, in essence 7-bit ASCII with national variants

"JIS\0\0\0\0\0” JIS X208-1990

"UNICODE\0” UTF-16 Unicode

"\0\0\0\0\0\0\0\0” Undefined, implication of local OS encoding

270 TIFF ImageDescription

274 TIFF Orientation

282 TIFF XResolution

283 TIFF YResolution

296 TIFF ResolutionUnit

305 TIFF Software

306 TIFF DateTime

CHAPTER 5: Digital Photography Native Metadata Reconciling metadata properties 76

Value conversions for TIFF and Exif tag values

The value conversions for TIFF and Exif tags are mostly straightforward. Integer values are converted to
decimal strings in the manner of "%d" in C printf. Rational numbers are converted to a
numerator/denominator form; for example, the pair (123,456) becomes "123/456". Signed rationals are
normalized to have only a leading minus, if any. The pair (123,-456) becomes "-123/456" and (-123/-456)
becomes "123/456".

Tags of type ASCII are converted allowing for UTF-8 or local encoding. If a native string contains a valid
UTF-8 sequence it is imported to XMP as-is. Otherwise, a local to UTF-8 conversion is performed. It is
possible for a locally encoded value to look like UTF-8 and be erroneously imported as UTF-8, but this is
very unlikely.

A date/time value is converted to ISO 8601 notation. The Exif date/time part is a 20-byte ASCII value
formatted as "YYYY:MM:DD HH:MM:SS" with a terminating null. Any of the numeric portions can be blank if
unknown. The fractional seconds are a null-terminated ASCII string with possible space padding. They are
literally the fractional part, the digits that would be to the right of the decimal point.

GPS latitude and longitude values are combined with their "ref" part to produce a single XMP map
coordinate.

➤ The native numeric portion is 3 rational numbers for degrees, minutes, and seconds. If all 3
denominators are 1, the numeric portion of the XMP is "deg,min,sec". Otherwise, floating-point
arithmetic is used to normalize the coordinate to "deg,min.frac", with enough fractional minute digits
to cover the largest of the 3 denominators.

➤ The ref portion in the native format is an ASCII letter for the English compass directions ('N', 'S', 'E', 'W')
and is appended directly to the numeric portion in the XMP value. Assuming a ref of 'N', for example,
the native format (12/1,34/1,56/1) becomes "12,34,56N" in XMP. The native format
(12/1,34/1,56789/1000) becomes "12,34.946N".

TIFF and Exif digests

The TIFF and Exif digests are in the XMP as tiff:NativeDigest and exif:NativeDigest. Each digest is a
comma-separated list of reconciled tags, a semicolon, and an MD5 digest of the tag values. The tags
should be added to the digest in the order of listing in tables 3, 4, 5, and 12 in the Exif 2.2 specification. The
16-byte digest is in the XMP as a 32-character hexadecimal string (using capital A-F).

TIFF and Exif tag tables

Tables 14 through 16 in the Exif 2.2 specification show by implication how the various TIFF and Exif tags
are divided among the 0th, Exif, and GPS IFDs. Neither the TIFF nor Exif specifications specifically state that
this separation is mandatory. Nor do they state whether tags must be unique, although the definitions of
almost all tags seem to imply that repeated tags should not be allowed. The TIFF specification does state
that tags within an IFD must be in ascending numerical order.

315 TIFF Artist

33432 TIFF Copyright

37510 Exif UserComment

40964 Exif RelatedSoundFile

CHAPTER 5: Digital Photography Native Metadata Reconciling metadata properties 77

Adobe practice is to adopt a “partially relaxed” policy towards TIFF and Exif tags. It is strict in only
accepting tags from their proper IFD as defined by tables 14 through 16 in the Exif 2.2 specification. Tags in
the wrong IFD are ignored. The policy allows tags within an IFD to be out of order on input, but always
writes them in correct order. Repeated input tags are tolerated, the last encountered one is kept.

The outer TIFF 0th IFD may contain the following tags that are of interest as metadata. The following table
does not list tags 34665 and 34853, the Exif and GPS IFD offsets. Those tags are not themselves of interest
as metadata, only as a means to find their respective IFDs. Except as noted above, the tags listed below are
all mapped to the XMP tiff: namespace, "http://ns.adobe.com/tiff/1.0/":

Tag Hex Type Count Name

256 0x100 SHORT or LONG 1 ImageWidth

257 0x101 SHORT or LONG 1 ImageLength

258 0x102 SHORT 3 BitsPerSample

259 0x103 SHORT 1 Compression

262 0x106 SHORT 1 PhotometricInterpretation

270 0x10E ASCII Any ImageDescription

271 0x10F ASCII Any Make

272 0x110 ASCII Any Model

274 0x112 SHORT 1 Orientation

282 0x11A RATIONAL 1 XResolution

283 0x11B RATIONAL 1 YResolution

284 0x11C SHORT 1 PlanarConfiguration

296 0x128 SHORT 1 ResolutionUnit

301 0x12D SHORT 3*256 TransferFunction

305 0x131 ASCII Any Software

306 0x132 ASCII 20 DateTime

315 0x13B ASCII Any Artist

318 0x13E RATIONAL 2 WhitePoint

319 0x13F RATIONAL 6 PrimaryChromaticities

529 0x211 RATIONAL 3 YCbCrCoefficients

530 0x212 SHORT 2 YCbCrSubSampling

531 0x213 SHORT 1 YCbCrPositioning

532 0x214 RATIONAL 6 ReferenceBlackWhite

33432 0x8298 ASCII Any Copyright

http://ns.adobe.com/tiff/1.0/":

CHAPTER 5: Digital Photography Native Metadata Reconciling metadata properties 78

The inner Exif IFD may contain the following tags that are of interest as metadata. Except as noted above,
these are all mapped to the XMP exif: namespace, "http://ns.adobe.com/exif/1.0/".

Tag Hex Type Count Name

33434 0x829A RATIONAL 1 ExposureTime

33437 0x829D RATIONAL 1 FNumber

34850 0x8822 SHORT 1 ExposureProgram

34852 0x8824 ASCII Any SpectralSensitivity

34855 0x8827 SHORT Any ISOSpeedRatings

34856 0x8828 UNDEFINED Any OECF

36864 0x9000 UNDEFINED 4 ExifVersion

36867 0x9003 ASCII 20 DateTimeOriginal

36868 0x9004 ASCII 20 DateTimeDigitized

37121 0x9101 UNDEFINED 4 ComponentsConfiguration

37122 0x9102 RATIONAL 1 CompressedBitsPerPixel

37377 0x9201 SRATIONAL 1 ShutterSpeedValue

37378 0x9202 RATIONAL 1 ApertureValue

37379 0x9203 SRATIONAL 1 BrightnessValue

37380 0x9204 SRATIONAL 1 ExposureBiasValue

37381 0x9205 RATIONAL 1 MaxApertureValue

37382 0x9206 RATIONAL 1 SubjectDistance

37383 0x9207 SHORT 1 MeteringMode

37384 0x9208 SHORT 1 LightSource

37385 0x9209 SHORT 1 Flash

37386 0x920A RATIONAL 1 FocalLength

37396 0x9214 SHORT 2..4 SubjectArea

37510 0x9286 UNDEFINED Any UserComment

40960 0xA000 UNDEFINED 4 FlashpixVersion

40961 0xA001 SHORT 1 ColorSpace

40962 0xA002 SHORT or LONG 1 PixelXDimension

40963 0xA003 SHORT or LONG 1 PixelYDimension

40964 0xA004 ASCII 13 RelatedSoundFile

41483 0xA20B RATIONAL 1 FlashEnergy

http://ns.adobe.com/exif/1.0/

CHAPTER 5: Digital Photography Native Metadata Reconciling metadata properties 79

The inner GPS IFD may contain the following tags that are of interest as metadata. Except as noted above,
these are all mapped to the XMP exif: namespace, "http://ns.adobe.com/exif/1.0/".

41484 0xA20C UNDEFINED Any SpatialFrequencyResponse

41486 0xA20E RATIONAL 1 FocalPlaneXResolution

41487 0xA20F RATIONAL 1 FocalPlaneYResolution

41488 0xA210 SHORT 1 FocalPlaneResolutionUnit

41492 0xA214 SHORT 2 SubjectLocation

41493 0xA215 RATIONAL 1 ExposureIndex

41495 0xA217 SHORT 1 SensingMethod

41728 0xA300 UNDEFINED 1 FileSource

41729 0xA301 UNDEFINED 1 SceneType

41730 0xA302 UNDEFINED Any CFAPattern

41985 0xA401 SHORT 1 CustomRendered

41986 0xA402 SHORT 1 ExposureMode

41987 0xA403 SHORT 1 WhiteBalance

41988 0xA404 RATIONAL 1 DigitalZoomRatio

41989 0xA405 SHORT 1 FocalLengthIn35mmFilm

41990 0xA406 SHORT 1 SceneCaptureType

41991 0xA407 RATIONAL 1 GainControl

41992 0xA408 SHORT 1 Contrast

41993 0xA409 SHORT 1 Saturation

41994 0xA40A SHORT 1 Sharpness

41995 0xA40B UNDEFINED Any DeviceSettingDescription

41996 0xA40C SHORT 1 SubjectDistanceRange

42016 0xA420 ASCII 33 ImageUniqueID

Tag Hex Type Count Name

0 0x0 BYTE 4 GPSVersionID

2 0x2 RATIONAL 3 GPSLatitude

4 0x4 RATIONAL 3 GPSLongitude

5 0x5 BYTE 1 GPSAltitudeRef

Tag Hex Type Count Name

http://ns.adobe.com/exif/1.0/

CHAPTER 5: Digital Photography Native Metadata Reconciling metadata properties 80

6 0x6 RATIONAL 1 GPSAltitude

7 0x7 RATIONAL 3 GPSTimeStamp

8 0x8 ASCII Any GPSSatellites

9 0x9 ASCII 2 GPSStatus

10 0xA ASCII 2 GPSMeasureMode

11 0xB RATIONAL 1 GPSDOP

12 0xC ASCII 2 GPSSpeedRef

13 0xD RATIONAL 1 GPSSpeed

14 0xE ASCII 2 GPSTrackRef

15 0xF RATIONAL 1 GPSTrack

16 0x10 ASCII 2 GPSImgDirectionRef

17 0x11 RATIONAL 1 GPSImgDirection

18 0x12 ASCII Any GPSMapDatum

20 0x14 RATIONAL 3 GPSDestLatitude

22 0x16 RATIONAL 3 GPSDestLongitude

23 0x17 ASCII 2 GPSDestBearingRef

24 0x18 RATIONAL 1 GPSDestBearing

25 0x19 ASCII 2 GPSDestDistanceRef

26 0x1A RATIONAL 1 GPSDestDistance

27 0x1B UNDEFINED Any GPSProcessingMethod

28 0x1C UNDEFINED Any GPSAreaInformation

30 0x1E SHORT 1 GPSDifferential

Tag Hex Type Count Name

CHAPTER 5: Digital Photography Native Metadata Metadata storage 81

Metadata storage
The intersection of file formats and metadata forms has confusing inversions, with portions of metadata
being wrapped and stored in a variety of ways in the file formats. For example, a TIFF file contains a block
of Photoshop image resources as the value of a TIFF tag, while a Photoshop file contains a TIFF header plus
IFDs as the value of an image resource. This section will outline metadata storage organized by file type
and by metadata type.

Storage by metadata form

TIFF tags for individual properties, including TIFF/Exif, can be found in these locations:

PHOTOSHOP NOTE: Photoshop 6 split the tags in a TIFF file between proper native tags and “buried”
tags in image resource 1058 within tag 34377. See “Photoshop 6 and TIFF” on page 84.

Photoshop image resources for individual properties can be found in these locations:

IPTC DataSets can be found in these locations:

XMP can be found in these locations:

File format Storage location

Photoshop TIFF within image resource 1058

TIFF Native IFDs

JPEG TIFF within Exif APP1 marker segment

File format Storage location

Photoshop Native image resource section

TIFF Tag 34377 in the 0th IFD

JPEG Photoshop APP13 marker segment

File format Storage location

Photoshop Photoshop image resource 1028

TIFF Tag 33723 in the 0th IFD; Photoshop image resource 1028

JPEG Photoshop image resource 1028

Any Mac Mac OS file resource 'ANPA' 10000 (prior to Photoshop 9)

File format Storage location

Photoshop Photoshop image resource 1060

CHAPTER 5: Digital Photography Native Metadata Metadata storage 82

Additionally, keywords and description can be found in Mac OS file resources:

Reading and writing of the Mac OS ANPA 10000 resource and the pnot 0 resource’s KeyW and Desc items
was dropped in Photoshop 9.

Metadata storage in JPEG files

JPEG files, including Exif JPEG, use a mixture of native marker segments, TIFF tags, and Photoshop image
resources. Metadata can be found in 3 APPn marker segments:

The TIFF in the Exif APP1 marker segment should not contain tag 700 (XMP), tag 33723 (IPTC), or tag 34377
(Photoshop image resources). There should be only one copy of the IPTC in a JPEG file, in Photoshop image
resource 1028 (ignoring the possible Mac OS ANPA 10000 resource).

The Photoshop image resources for metadata that can be used in JPEG are shown below. Other
non-metadata image resources might also be present. Image resources 1058 (TIFF) and 1060 (XMP) should
not be used in JPEG files.

TIFF TIFF tag 700

JPEG XMP APP1 marker segment

File format Storage location

Any Mac OS Mac OS file resources from 'pnot' 0 items KeyW and Desc

File format Storage location

Marker Signature, including NULLs Usage

APP1 "Exif\0\0” TIFF and Exif (2 NULLs)

APP1 "http://ns.adobe.com/xap/1.0/\0” XMP

APP13 "Photoshop 3.0\0” Photoshop image resources

ID Hex Description

1028 0x404 IPTC DataSets

1034 0x40A Copyright flag as a 0/1 Boolean

1035 0x40B Text string for a copyright information URL

1061 0x425 MD5 digest of the IPTC data

http://ns.adobe.com/xap/1.0/%5C0%E2%80%9DXMPAPP13
http://ns.adobe.com/xap/1.0/%5C0%E2%80%9DXMPAPP13

CHAPTER 5: Digital Photography Native Metadata Metadata storage 83

Metadata storage in Photoshop files

Photoshop files use Photoshop image resources as the metadata storage mechanism. The metadata
image resources were listed earlier, and are repeated below. Other non-metadata image resources might
also be present.

The TIFF in image resource 1058 can contain a full set of the TIFF metadata tags for individual properties,
including use of the Exif and GPS subsidiary IFDs. The TIFF in a Photoshop file should not contain XMP or
IPTC (TIFF tags 700 or 33723). Or of course nested copies of image resources (TIFF tag 34377).

Some very old versions of Photoshop wrote image resource 1008 or 1020, but not both. These are now
considered obsolete, both were dropped prior to Photoshop 6. The current Photoshop SDK does not even
contain type information for 1020.

Metadata storage in TIFF files

As mentioned earlier, the IFDs used in TIFF and Exif contain a large number of tags that are of interest as
metadata. All but 5 of these tags are for individual metadata properties. The other 5 are for contained
blocks of metadata:

The TIFF physical type (BYTE, SHORT, LONG, etc.) must be taken into account when processing the XMP,
IPTC, and image resources. There may be appended 0x00 bytes to make the total size be a multiple of the

ID Hex Description

1028 0x404 IPTC DataSets

1034 0x40A Copyright flag as a 0/1 Boolean

1035 0x40B Text string for a copyright information URL

1058 0x422 Exif metadata

1060 0x424 XMP

1061 0x425 MD5 digest of the IPTC DataSets

ID Hex Description

1008 0x3F0 Caption as a Pascal string

1020 0x3FC Caption as a plain string

Tag Hex Usage

700 0x2BC XMP

33723 0x83BB IPTC DataSets

34377 0x8649 Photoshop image resources

34665 0x8769 Exif IFD offset

34853 0x8825 GPS IFD offset

CHAPTER 5: Digital Photography Native Metadata Metadata storage 84

physical unit. Software loops processing the data must be prepared to terminate 1 to 3 bytes early,
depending on the physical unit.

The Photoshop image resources for metadata that can be used in TIFF are shown below. A TIFF file should
not contain image resource 1060 (XMP). A TIFF file might contain image resource 1058 (TIFF) because of
the Photoshop 6 feature/bug mentioned below. Other non-metadata image resources might also be
present.

NOTE: TIFF files contain 2 copies of the IPTC: in the top level TIFF tag 33723, and in image resource
1028 within TIFF tag 34377. Photoshop 6, Photoshop 7, and Photoshop 9 all do this. There is also a
possible third copy of the IPTC in the Mac OS ANPA 10000 resource.

Photoshop 6 and TIFF

Photoshop 6 wrote TIFF in an awkward and nonintuitive manner. Photoshop 6 placed most of the TIFF/Exif
information within image resource 1058 instead of natively in the "real" TIFF file IFDs. This includes the Exif
subsidiary IFD, tag 34665 is only written in the 0th IFD within image resource 1058. In addition, tags 259,
270, 282, and 296 were written in both the outer native 0th IFD and in the 0th IFD within image resource
1058. Several tags are also duplicated between the 0th and 1st IFDs image resource 1058. But since that is
duplication between the main image and thumbnail and the 1st IFD contains a proper subset of the tags
in the 0th IFD, those in the 1st IFD can be ignored.

Photoshop 7 and Photoshop 9 do not write image resource 1058 in a TIFF file.

Here is a sketch of the content of a TIFF example from various versions of Photoshop:

➤ Photoshop 6 - big-endian TIFF

➣ IFD 0 - 256, 257, 258, 259, 262, 270, 282, 283, 284, 296, 33723 (IPTC), 34377 (PSIR)

— Tag 34377 PSIR - 1028 (IPTC), 1034, 1035, 1058 (Exif)

— 1058 - Exif as little-endian TIFF

— IFD 0 - 270, 271, 272, 274, 282, 283, 296, 306, 531, 34665 (Exif)

— IFD 1 - 259, 271, 272, 274, 282, 283, 296, 306

— Exif IFD - 27 typical tags

➤ Photoshop 7 - big-endian TIFF

➣ IFD 0 - 256, 257, 258, 259, 262, 270, 271, 272, 282, 283, 284, 296, 305, 306, 315, 700 (XMP), 33723
(IPTC), 34377 (PSIR), 34665 (Exif)

➣ Exif IFD - 25 typical tags

ID Hex Description

1028 0x404 IPTC DataSets

1034 0x40A A Copyright flag as a 0/1 Boolean

1035 0x40B Text string for a copyright information URL

1061 0x425 MD5 digest of the IPTC DataSets

CHAPTER 5: Digital Photography Native Metadata Metadata storage 85

➣ Tag 34377 PSIR - 1028 (IPTC), 1034, 1035, 1061

➤ Photoshop 9 - big-endian TIFF

➣ IFD 0 - 256, 257, 258, 259, 262, 270, 271, 272, 282, 283, 284, 296, 305, 306, 315, 700 (XMP), 33432,
33723 (IPTC), 34377 (PSIR), 34665 (Exif)

➣ Exif IFD - 26 typical tags

➣ Tag 34377 PSIR - 1028 (IPTC), 1034, 1035, 1061

Metadata storage in Mac OS file resources

Mac OS versions of Photoshop through Photoshop CS also wrote some metadata in Mac OS file resources.
These resources are not written by Photoshop CS2 or later. The resources are:

The value of the ANPA 10000 resource is a sequence of IPTC DataSets, as previously described.

The pnot resource was created by Apple for annotation information as part of QuickTime. Its structure is
shown below. Only the KeyW and Desc additional items are of interest for metadata.

Each additional item has the structure shown below. Only the associated resource for the KeyW and Desc
items is of interest for metadata.

ANPA 10000 IPTC metadata (this takes priority for reconciliation of
multiply-defined values; see “Reconciliation issues” on page 64)

pnot 0 Keywords and description

Offset Length Description

0 4 Modification timestamp as a 32-bit big-endian Mac OS time

4 2 Version number, 16-bit big-endian integer

6 4 Resource type for preview

10 2 Resource ID for preview, 16-bit big-endian integer

12 2 Number of additional items, 16-bit big-endian integer

14 - Sequence of additional items

Offset Length Description

0 4 Modification timestamp as a 32-bit big-endian Mac OS time

4 4 OSType defining the usage of this item

8 4 Resource type for the associated data

12 2 Resource ID for the associated data, 16-bit big-endian integer

CHAPTER 5: Digital Photography Native Metadata Metadata storage 86

The items whose usage is KeyW or Desc are of interest for metadata. The KeyW item should have an
associated STR# resource that contains the keywords. A STR# resource contains a 16-bit big-endian count
of strings followed by a sequence of Pascal strings. The Desc item should have an associated TEXT resource
that contains the description. A TEXT resource simply contains text.

14 2 Region code for this item, 16-bit big-endian integer

16 4 Reserved

Offset Length Description

	XMP Specification Part 3
	Preface
	About this document
	How this document is organized
	Conventions used in this document

	Where to go for more information

	Introduction
	Embedding metadata in files
	External storage of metadata
	Native metadata

	XMP Packets
	The XMP packet format
	Header
	Attribute: begin
	Attribute: id
	Attribute: bytes
	Attribute: encoding

	XMP data
	Padding
	Trailer
	Attribute: end

	Scanning files for XMP packets
	Scanning hints

	Embedding XMP Metadata in Application Files
	Image formats
	DNG (Digital Negative)
	Camera raw formats

	GIF (Graphic Interchange Format)
	JPEG
	Extended XMP in JPEG
	Partitioning XMP

	JPEG 2000
	PNG (Portable Network Graphics)
	TIFF (Tagged Image File Format)

	Dynamic media formats
	ASF (WMA, WMV)
	ASF format
	XMP embedded in ASF

	AVI
	About RIFF
	About AVI

	FLV (Flash Video)
	MOV (QuickTime)
	MP3
	MPEG-2
	MPEG-4
	SWF (Flash)
	WAV

	Video package formats
	AVCHD
	P2
	Sony HDV (High Definition Video)
	XDCAM EX
	XDCAM FAM
	XDCAM SAM

	Adobe application formats
	AI (Adobe Illustrator)
	INDD, INDT (Adobe InDesign)
	Finding XMP in an InDesign file
	Rewriting XMP data beyond the packet padding
	Master page structure
	Header and trailer structure

	PSD (Adobe Photoshop)

	Markup formats
	HTML
	Embedding XML in HTML

	XML

	Document formats
	PDF
	PS, EPS (PostScript and Encapsulated PostScript)
	Document-level metadata in PostScript
	Object-level metadata in PostScript

	UCF (Universal Container Format)

	Handling Native Metadata
	Reconciling metadata in different formats
	Text encodings in import and export
	Native metadata export policy
	Native metadata import policy

	Native metadata in PDF files
	User-defined keys
	Resolving metadata conflicts

	Native metadata in dynamic media formats
	Native metadata in ASF (WMA, WMV)
	Native metadata in AVI
	Native metadata in MP3
	Native metadata in MPEG-4
	Native metadata in WAV

	Native metadata in digital photography formats
	Reconciliation issues
	Encoding of text in metadata

	Digital Photography Native Metadata
	Metadata storage in native formats
	TIFF metadata
	Exif metadata
	Photoshop image resources
	IPTC (IIM) metadata

	Reconciling metadata properties
	Photoshop image resources for metadata
	IPTC DataSets for metadata
	TIFF and Exif tags for metadata
	Value conversions for TIFF and Exif tag values
	TIFF and Exif digests
	TIFF and Exif tag tables

	Metadata storage
	Storage by metadata form
	Metadata storage in JPEG files
	Metadata storage in Photoshop files
	Metadata storage in TIFF files
	Photoshop 6 and TIFF

	Metadata storage in Mac OS file resources

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [594.000 792.000]
>> setpagedevice

