AU Q JUIMENTT

r

1.0 Overview

This report describes Archie, an image processing software package written at RIT for
the Archimedes Palimpsest project. The software is written in the C programming
language and is designed to run on the UNIX operating system.

The architecture of the package allows it to be used for general purpose image processing
tasks. Individual algorithms can be easily implemented and included in the package, with
no modifications required to the rest of the package. This enables quick experimentation

and testing of new image processing algorithms.

The software package has no interactive graphic user interface. Tasks are intended to be
run in batch mode and to be applied to a large number of images, so only a command line
interface is provided. A complete history of the commands used to process an image are
stored within the image file header for later review.

Instructions for compiling the package and for constructing new modules are included in
sections 6 and 7.

2.0 Archie Software Architecture

2.1 Modularity

Individual algorithms in Archie are implemented in separately compiled modules that
implement one particular algorithm. Typically, each module takes an input image on the
standard input pipe (standard in), processes the image and writes the image to the
standard output pipe (standard out). The image is stored in a simple form of the TIFF
6.0 image file format.

The details of what the input image looks like are stored the TIFF header of the image
file. This header includes information such as the number of pixels, the number of
scanlines, the number of bits/sample, the number of samples/pixel, etc. It also includes
other TIFF tags that can be used to store metadata related to the image, see section 6.4.

Each module can be called with options on the command line. These options specify
parameters important to the specific algorithm, such as window sizes, types of
processing, scale factors, etc.

parameters

image ——p Module ——» image

Just like puzzle pieces, individual modules can be joined together by piping the output of
one module to the input of another. If a module changes the size of the image, then its
output image header is changed to reflect the new size. The next module down the
pipeline reads the changed size from the new header.

parameters parameters

image — | Modulel |—3| Module2 |— image

For example, if Module 1 above is the command “scale —factor 2”, then it will magnify
the image by replication by a factor of 2. An input image of 512 x 512 pixels will be
converted to an output image of 1024 x 1024 pixels. Module 2 will only see the larger
1024 x 1024 image.

2.2 Image Streaming

Each module processes the data that it receives in a prescribed order. First, it reads the
parameters from the command line. These parameters tell the module what the user
would like done to the input image.

Next, it reads and processes the header of the input TIFF image. From the header it
learns the characteristics of the input image. The header and the command line
parameters are then compared and the module decides if it can complete that task as
requested. If it cannot, it issues an error and halts processing.

After deciding that it can do the task, the module creates a new TIFF image header, one
that describes the characteristics of its output image. This new header is then written to
the output and is passed on to the next module in line that is waiting to hear what to
expect.

Only after having informed the next module what to expect, does this module start to
process the image. In this software package, the preferred mode of processing the image
is a few scanlines at a time, maybe even one at a time. This mode is called streaming.

In streaming, a scanline is read from the input image, processed to produce a
corresponding output scanline, which is then written to the output pipe. In this way, the
image is streamed through the many modules in the pipeline a few scanlines at a time.

If the processing algorithm requires a window or neighborhood in which to do the
processing, then a few input scanlines can be buffered and cycled through. Of course, in
a few cases of algorithms like the FFT, the whole input image may need to be buffered.

2.3 Advantages of the Architecture

There are several advantages of this architecture. It makes it easy to use multiple
processors, it is memory efficient (enabling larger images to be processed) and it allows
errors to be dealt with before any processing is started.

Multiprocessor UNIX machines are becoming commonplace. These computers
automatically divide tasks between available processors. In this architecture, the image
processing task is specified by the user as computed by different modules that can be run
on different processors. As long as the individual modules are written with a good
balance of I/O and computation, a multiprocessor operating system can utilize all of its
available processors on any given image processing task.

Memory is inexpensive these days and getting cheaper. One might argue that since
memory is so cheap, it is not necessary to write code that is memory efficient. The
counter argument, however, is that everything else being equal, a memory-efficient
module, that streams an image through, can process a much larger image more efficiently
that can a module that reads the whole image into memory before processing. Memory
will continue to get cheaper, but images will continue to get larger.

This architecture also allows errors to be dealt with before any processing is started.
Errors are generated as a result of inconsistencies between the input image and the
parameters passed to the module. By processing the image headers first and passing
them down the pipeline of modules, every module has a chance to inspect what it is about
to do and to halt the process before any processing is started. The user of the package
would not be happy if the first 5 modules spent an hour completely processing their
version of the image and then the last module quit without doing anything because its
parameters had a small typographical error. Handling the headers first (and therefore the
errors) gets them out of the way before the processing is begun.

3.0 Image File Format

Each module in the architecture needs to understand the same image file format, so that
the modules can be combined in any order and they will all communicate with each other.

There are several desirable characteristics of the image file format for Archie. It should:

* allow a broad range of images types

* Dbe readable by other software, such as Photoshop

* lend itself to a streaming architecture

* Dbe arecognized external standard

* provide the ability to record metadata within the file.

After looking over several image file format standards, it was concluded that a restricted
version of TIFF 6.0 would meet all of the above requirements.

The details of the file format are presented here, but they do not need to be understood to
read and write the image files within an individual module’s source code. Special library
routines are provided that handle reading and writing both the TIFF headers and the raster
data. The only part of the structure that needs to be understood by someone writing code
is how the raster data is stored within the scanlines in memory. The library routines and
the structure of the scanlines are discussed in detail in sections 6.3 and 7.2.

3.1 Image File Restrictions

The TIFF 6.0 format is very broad, but a restricted version is implemented in the Archie
library routines. The restricted version allows the image file to be streamed through a
pipeline of modules and still be readable by Photoshop. Here is the list of restrictions:

Byte Order. Either Intel (IBM) or Motorola (Mac) byte order is allowed. Typically, the
byte order of the input is used on the output, but it can be changed within a module.

Bits/Sample. Currently restricted to 1, 8, or 16 for unsigned integers and to 32 for
floating point, see Sample Format. Complex floating point 64 is planned for the future.

Sample/Pixel. There can be any number of samples/pixel, only subject to photometric
interpretation or a soft matte. All samples must have the same number of bits/sample.

Sample Format. Pixel data is interpreted as unsigned integer, signed integer, floating
point, or undefined. The latter may be used for complex floating point, in the future.

Soft Matte. An extra sample, attached to each image pixel, that multiplies the pixel to
mask the image. It must have the same number of bits/sample as the image.

Photometric Interpretation. There are two photometries defined, both where larger
numbers are brighter. Gray has one monochrome sample and RGB has three.

Sub Images. A TIFF file can contain more than one image. Archie only reads the first,
or high resolution, image if more than one is present. See the module readtif.

TIFF Directory. In the Archie image file, the directory, any directory entries and any
metadata must come before all of the raster image data.

Image Strips. There can only be one image strip, which contains all the image data.

Planar Configuration. There can only be one image plane, in which multiple samples
of a given pixel are continguous.

Comments. Comments can be added to the TIFF header in the form of character strings.
The command line parameters are automatically recorded in the header. See section 6.4.

Archie Image File Format

byte order magic # directory

metadata

raster data

A restricted TIFF 6.0 file format that can be streamed through Archie modules
and still be read in Photoshop.

1 8 16 unsigned integer

32 float

64 complex

The interpretation of the pixel data depends on the number of bits/sample.

GoG1Gy. .. gray
GoSoG1S1G2Sa. .. gray w/ soft matte
RoGoBoR1G1 B;. .. color
RoGoBoSoR1G1B1S;... color w/ soft matte

Multiple samples of a pixel are positioned next to each other.

4.0 Released Modules

Several modules have been implemented to date and more will be added in the future.
Brief descriptions of the modules, the algorithms that they implement and the command
lines to call them are given in this section.

4.1 Command Line Arguments

A flag is a letter, a word, or group of letters that is preceded by a dash, or minus sign.
The flag may or may not have arguments following it on the command line. Multiple
arguments are separated by spaces. Arguments that follow can be negative, i.e. be
preceded by a minus sign.

There are a few command line flags and arguments that are common with almost all of
the modules. These arguments, or parameters, have to do with specifications of input and
output files and of windows or regions of interest.

-i filename

If this flag is present, it is the name of the file to use as input. If it is not present, then the
input image is expected on the standard input pipe.

-0 filename

If this flag is present, it is the name of the file to use as output. If it is not present, then
the output image is written to the standard output pipe.

-[flwinxywh

The -win flag specifies a window, consisting of four parameters, that indicates the region
of the image to process. This rectangular region is W pixels wide and h scanlines high
and is located X pixels in from the left edge and Yy scanlines down from the top of the
image.

If the -fwin flag is present, then the four parameters following are floating point numbers
between 0.0 and 1.0 and they represent the fraction of the width or height of the image to
skip or process.

The square brackets around the [f] indicate that the f is optional. The brackets are not
typed into the command line. In other words, in the above example, there are two options
available, either -win or -fwin.

4.2 Module Descriptions

append -- append one image to another
usage: append [-a] filename [-i input] [-0 output] -[r |]|t |b]

One image is appended to another. The image being appended is designated with the -a
flag, followed by the file name. If this is the first argument, then the -a flag is not
required.

The input image is the image to which the other image is appended. The input image is
specified by the -i flag or is on standard in.

The way in which the image is appended is specified with one of four flags, -, -/, -t or -b.
These refer to appending the image on the right, left, top or bottom, respectively. One of
these flags must be present on the command line.

The sides of the two images that join together must have the same length. In other words,
if the image is appended to the right or left, then the two images must have the same
number of scanlines. If the image is appended at the top or bottom, then the two images
must have the same number of pixels.

Both images must have the same number of bits/sample and samples/pixel.

crop -- limit the image to specified rectangular region
usage: crop [-i input] [-o output] -[flwin xyw h
A window flag, either integer -win, or floating point -fwin, is required. The input image

is read from the input file specified by -i or from standard in. Only the image data in
rectangular region specified by the window is transferred to the output image.

header -- print out the header information from the image file
usage: header [[-i] input]

The header information from the image file is read and printed on standard out. The
image data is then read from the input and a check is made to see if the stated amount of
image data is present. If any of the known TIFF tags are present, their values are also
printed to standard out.

histogram -- create an image containing a plot of the histogram of the image

usage: histogram [-i input]| [-0 output]| -[f]win x yw h [-red] [-green] [-blue] [-key] [-
solid]

An image is read on the input, a histogram is made for each sample and a plot is drawn.
The output image contains a 512 x 512 plot with an 8 pixel border on the left and an 8
scanline border on the bottom.

If any of the four flags, -red, -green, -blue, or -key (black) are present, then only those
present are drawn on the plot. Otherwise all four are drawn. The key plot contains the
histogram of either the luminance of a color image or the histogram of a monochrome
image.

The default is to draw lines between the points in the histogram. If the -solid flag is
present, then only the points are drawn.

metadata -- add metadata to the image file header

usage: metadata [[-i] input] [-0 output] [-replace tag string] [-append tag string] [-
xres num denom] [-yres num denom]

This module will change the metadata in the TIFF tags in the header. Unlike the other
modules, the actual command executed by this module is not stored in the header.

If the -replace flag is present, then the the TIFF tag in the header is replaced with the
accompanying string. The recognized tags are: "DocumentName", "ImageDescription",
"Make", "Model", "PageName", "Software", "DateTime", "Artist", "HostComputer",
"Copyright".

If the -append flag is present, then the string is appended to any existing strings
associated with the tag in the header. In accordance with the TIFF 6.0 standard, each
string ends with a zero character, i.e. a byte of value 0. If two strings are appended
together, then each still ends with a zero byte.

If the -Xres or -yres flags are present, then the resolution parameters are set in the TIFF
header. The resolution value set is given by the ratio num/denom.

normalize -- locally adjust contrast and brightness
usage: normalize [-i input] [-o output] [-w width] [-strobe] [-tungsten] [-ultraviolet]

The contrast and brightness of each color channel are adjusted locally over a square
region specified by the -w flag. The variance and mean are measured within the window,
centered around the pixel being adjusted, and the pixel is scaled so that the mean value
goes to 128 and black to white covers 6 sigma.

If the -ultraviolet flag is present, then the green channel is substituted for the red channel
and the blue channel is made brighter by the value of one standard deviation. The -strobe
and -tungsten flags are unused at this time.

The output image is always 8 bits/sample and it will have the same samples/pixel as the
input image.

packimage -- convert image to 8 bits/sample unsigned integer

usage: packimage [-i input] [-o output] [-minmax min max] [-sigma] [-width w] [-
luminance] [-verbose]

This module converts an image to 8 bits/sample from 16 or 32 by stretching the contrast
based on the range of input pixel values. The purpose is to move the image information
into a visible range.

If the -minmax flag is present, the min and max values are used to linearly stretch the
image. Any value at or below min is made black and any value at or above max is made
white.

If the -sigma flag is present, the standard deviation and mean of the whole image are
calculated and the image values are stretched so that the mean is at 128 and black and
white are 6 standard deviations apart. If the -width flag is present, then black and white
are 2*w standard deviations apart.

If neither the -minmax nor the -sigma flag is specified, then the image is linearly stretched
from the actually minimum and maximum of the image. The minimum and maximum
are the endpoints of all the image samples.

If the -luminance flag is present, then the stretch parameters (min and max, or variance
and mean) are calculated from the luminance (.3R+.6G+.1B) and applied equally to all
channels.

If the -verbose flag is present, then the statistics of the image are written to stderr.

pseudocolor -- combine two images together into one pseudocolor image

usage: pseudocolor -u UV -v [tungsten | strobe] [-0 output] [-w width] [-cv channel] [-
cu channel]

There are two input images, an ultraviolet image specified by the -u flag and a visible
image specified by the -v flag. A single color channel from each file is normalized then
combined together into a pseudocolor file. The red channel of the pseudocolor image is
taken from the visible file. The green and blue channels of the pseudocolor image are the
same and are taken from the ultraviolet image.

A spatially local normalization of contrast and brightness is performed on each color
channel. This is the same normalization performed in the normalize module. The -w flag
specifies the size of the square region over which the normalization is performed around
each pixel.

By default, the red channel of the visible image and the blue channel of the ultraviolet
channel are used to make the pseudocolor image. If the -cu flag is present, a different
channel for the ultraviolet image can be specified, where O is red, 1 is green and 2 is blue.
If the -cv flag is present, the channel of the visible image can be specified.

pushbutton -- display the difference between two images

usage: pushbutton -u UV -v [tungsten | strobe| -0 output [-w width] [-statistics redmin
redmax bluemin bluemax] [-pseudocolor] [-normalized]

The same two input images for the pseudocolor module are used in the pushbutton
module. The same two channels are used also. The difference is that the pushbutton
module produces a monochrome image that shows the difference between the two
images.

The -statistics flag specifies the min and max points in the red and blue channels to be
used to linearly stretch the two channels before subtracting. This flag must be present to
produce the normal monochrome pushbutton image.

If the -pseudocolor flag is present, then the two channels are not subtracted, but are put
into the channels of a pseudocolor image on the output. The only difference between this
pseudocolor output and the image produced by the pseudocolor module is that this output
has a global adjustment of the contrast, while the pseudocolor module does a local
adjustment over a sliding window. The -statistics flag must be specified for this to
complete.

If the -normalize flag is present, then a local adjustment of the contrast and brightness is
made over the two channels, rather than the global adjustment. The output image is then
the difference between the two channels. This mode does not use any information that
may be specified with the -statistics flag.

readtif -- read a TIFF file and convert to the form used in Archie
usage: readtif [-i] input [-0 output] [-[f]win x y w h] [-d directory] [-verbose]

The input filename argument is required. The input file cannot be read from standard in.
If the first argument is the input filename, the -i flag is not required. Readtif can read
TIFF files in which the scanlines and metadata are not separated or contiguous, so it must
read from the file directly.

If the -d flag is present, an alternate image directory can be specified. The first (default)
directory is 0.

10

The -verbose flag causes the TIFF tag information to be printed to stderr.

A rectangular window of the input image can be specified to limit the content of the
output image.

rect -- blur the input image with a rect function
usage: rect [-side| width [height]

The input image is blurred with a rectangularly shaped filter that has a constant value and
a unit area. The calculation is done in a fast averaging method in which the computation
is a constant and is not a function of the size of the blur window.

The size of the rectangular window is specified with the -side flag. This specification is
required, however, if it is the first flag, the -side flag is not required. If there is only one
argument to the -side flag, then it is the width and the height of the window. If two
arguments are present, then the second argument is the height.

rotate -- rotate the image in 90 degree increments
usage: rotate [[-i] input] [-0 output]| -angle theta

The -angle flag is a required argument. The parameter theta must be a multiple of 90
degrees and may be positive or negative. A positive angle of rotation is in the counter-
clockwise direction. This module may be extended to arbitrary angles in the future.

scale - magnify or reduce the size of an image
usage: scale [-i input] [-0 output] -[a]f x [y]

The image is increased or decreased in size by a nearest neighbor scaling, i.e. the closest
pixel to scaled position is used.

The scale factor is specified with the -f flag. It may be either integer or floating point.
Only one parameter is expected to follow the flag and both directions are scaled by the
same factor.

The -af flag specifies anamorphic scaling, where the scale factors in X and Yy are different.
This flag has two parameters following it.

statistics -- compute the variance and mean of the input image
usage: statistics

The complete input image is read and the standard deviation, mean, max and min values
of the image are computed and written to standard out.

11

5.0 Compiling the Software

The software source code is packaged in a tar file, archie_1.0.tar. The source code can be
extracted with the following command:

tar xvf archie_1.0.tar

The extracted files will create the Archie release directory, which has the following
structure:

archie 1.0
include bin src lib make release
append crop libarchie rotate scale

The cshell command file, make release, will compile the Archie 1.0 software and place
the compiled results in the bin directory. Each individual module has it own directory
under Src that contains the source code and a Makefile to compile it.

5.1 Make_release

The code is compiled by executing the command file make release. This will clean up
old versions and compile the complete package in the proper order.

The first operation is to change into each individual src directory and clean any
previously compiled code. This is accomplished by executing the command, make clean,
to remove all previous *.o file and the compiled executable code.

The second operation is to compile the library routines. The library routines are
compiled and the library, libarchie.a, is constructed and copied to the lib directory where
it can be referenced by the individual modules.

12

The third operation is to change to each individual directory and compile the individual
module. The Makefile refers to the released library two levels higher in the directory

structure. The compiled executable code is copied to the bin directory two levels higher.

For later changes to individual modules, the code can be recompiled by simply executing
the command, make, while in the individual source directory. If a change is made to the
library, then all of the source code needs to be recompiled.

6.0 Writing a Software Module

The requirements of a software module are to:

* read command line arguments
* read any input image headers

* resolve any conflicts and halt execution, if necessary

» write the new header reflecting changes to be made to the image
* stream the image data through the module

* make the changes to the image data as it travels through

These requirements are met with the
following software structure:

The main() procedure defines the
basic order of processing the
command line, the headers and finally
the data. This procedure should be the
same for all modules.

The getargs() procedure defines the
command line arguments that this
module will recognize and calls any
errors in the command line arguments.

The processhandle() procedure checks
the characteristics of the input images
against the user requests in the
command line and raises any conflicts
or final errors that it finds.

Finally, now that everything checks
out, the processdata() procedure
actually executes the processing to be
done on the input images.

A record of changes made to this
module is kept in comments at the end
of the file.

/* sample.c
*

*/

main (argc, argv)
int argc;
char *argvl[];
{
getargs (argc, argv);
input = gethandle (£din);
processhandle () ;
puthandle (fdout, output);
processdatal() ;
exit (0);
}

void getargs(argc, argv)
int argc;
char *argv|[];
{
}

void processhandle ()
{
}

void processdata()
{
}

/* Change Log
* K. Knox, 28-Muy-02,
*/

13

6.1 Command Line Arguments

The command line arguments are read in the procedure, getargs(). An example of this
procedure, taken from the rotate module, is shown on the next page. This section
explains that example procedure in detail and shows how it is constructed.

The module, rotate, has three flags that it recognizes, -in, -out and -angle. At the
beginning of the procedure, it loops over all of the arguments, starting with argument 1.
(Argument O is just the name of the program that was called.)

The loop checks each argument to see if it begins with -i, -0, or -a. It only checks the
first two letters, because there is no ambiguity in these flags after two letters.

If it finds one of these flags, it sets the parameter, isflag, to a defined constant value that
identifies the flag and the number of expected arguments. For example, if the -angle flag
is encountered, then isflag is set to the defined constant ANGLE, which is equal to
3#%256+1. The number multiplying 256 is an arbitrary value to identify the flag. The
trailing +1 is the number of arguments that this flag expects to be following it.

If this is not a flag, and this is the first argument, then it is assumed to be the input image
file name and the local variables are set as if the rest of the loop had been completed.

Once it has checked for flags, the variable isflag is set to zero or to a non-zero value. The
loop branches into two paths depending on whether this argument was or was not a flag.

If this argument is a flag, then first the variable outstanding is checked to see if there are
any outstanding arguments still being expected by a previous flag. If so, an error is
called. If not, then the variable outstanding is set to the number of expected arguments
for this flag, that was stored in the lower byte of defined constant, in this example, +1.

We now loop to check the second argument. First, a test to see if it is a flag. If the test
shows that it is not, it last checks if this is the first argument. Since it is not, it goes on to
the test of the variable, isflag. It is not a flag, so it branches into the section that deals
with following arguments.

Which flag is expecting this argument is stored in the variable, flag. A check is made and
the appropriate action is taken. For the case of an input or output image file name, the
argument is stored in the appropriate global variable. For the case of the angle argument,
the argument is scanned for a floating point value and stored in the angle global variable.

Once all the arguments have been checked, it drops out of the loop and looks to see if all
the arguments are present. If no angle has been specified or if an angle that this module
cannot handle has been specified, an error is called.

The input and output file names are checked. If they are set, then the appropriate files are
opened. If they are not set, then either standard in or standard out is specified for 1/O.

Last, a library routine is called to automatically record the command line in the header.

14

#define INPUT 1*256+1
#define OUTPUT 2*256+1
#define ANGLE 3*256+1

void getargs(argc, argv)

int argc;

char *argvl[];

{

int nj;

int flag = 0;

int isflag = 0;

int outstanding = 0;

for (n=1; n < argc; n++)
{
/* Check this argument for flags. */

if (strncmp(argv[n], "-in", 2) == 0) isflag = INPUT;

else if (strncmp(argv[n], "-out", 2) == 0) isflag = OUTPUT,

else if (strncmp(argv[n], "-angle", 2) == 0) isflag = ANGLE;

else { isflag = 0; if (n == 1) { outstanding = 1; flag = INPUT; }

/* If this is a flag, see if it is interrupting the previous flag.
if (isflagqg)

{

if (outstanding > 0) error(err0);

outstanding = isflag & 255;

flag = isflag;

}

else
{
if (flag == INPUT) inputname = argv[n];
else if (flag == OUTPUT) outputname = argv[n];
else if (flag == ANGLE) sscanf (argv[n], "%1lf", &angle);
else outstanding++;
outstanding--;

}
}

/* Check angle parameter. */
if (angle != 180.0 && angle != -180 && angle != 90 && angle != -90)
error(errl);

/* Check for the input file name and use stdin, if not there. */
if (inputname != (char *) 0) fdin = open (inputname, O_RDONLY) ;
if (fdin < 0) error(err2, inputname);

/* Check for the output file name and use stdout, if not there. */

if (outputname != (char *) 0) fdout = open(outputname, O_WRONLY |
O_CREAT, (unsigned int) 0666);

if (fdout <= 0) error(err2, outputname);

/* Create the command line as a comment. */
commandcomment (argc, argv);

}

}
*/

15

6.2 Input and OQutput Handles

The header information is stored in a structure called a handle. The calls to read and
write a handle are made in the main() procedure. In between reading the input handle
and writing the output handle, the output handle needs to be constructed and any conflicts
need to be resolved.

On the right, is the handle structure that is made | /* Archie.h
available to the programmer. The procedure *

gethandle() that is executed in main() returns */

'Fhls strucfture. In this str}lcture is stpred the struct HANDLE
information about the width and height of the {

image, the interpretation of the pixel data, int ImageWidth;
whether or not there is a soft matte present, and int Imagelength;

int BitsPerSample;
int SamplesPerPixel;
int SoftMatte;

the resolution of the image.

If any values in the input structure are changed, int SampleFormat;

it has no effect on the image or the processing. int PhotometricInterpretation;
int ResolutionUnit;

On the other hand, an output structure can be double XResolution;j

double YResolution;

created by duplicating an existing structure or s

by creating a new structure. These values can

be changed, up until the time the structure is
written on the output using the procedure, puthandle().

The output structure is created in the procedure, processhandle(). An example of this
procedure from the crop module is shown on the next page.

The processhandle() procedure has two tasks, to resolve any conflicts between the
command line requests and the characteristics of the input image, and to create the output
handle.

First, the procedure get the information about the image from the input handle that was
read with gethandle() in main(). The only concern that crop has is to make sure that the
number of bits/sample is either 1 or a multiple of 8. An error is called if that is not the
case.

Next, it checks the window that was specified by the user in the command line arguments
and makes sure that the window does not lie outside the image, calling an error if it does.

Lastly, it creates an output handle, by duplicating the input handle and setting the width
and height parameters of the output image handle structure to the width and height of the
window that was specified.

The new values in the output structure do not take effect until the output handle is written
to the output using the procedure, puthandle().

16

/* crop.c
*

*/

void processhandle ()
{
/* Read file sizes. */
pixels = input->|nmageW dt h;
scanlines = input->|l nmagelLengt h;
BitsPerSample = input->Bit sPer Sanpl e;
SamplesPerPixel = input->Sanpl esPer Pi xel ;

/* Check the image parameters. */
if (BitsPerSample != 1 && (BitsPerSample & 7) != 0) error (err4,
Bi t sPer Sanpl e) ;

/* Check the window parameters. */
if (count)

= window[0];

= window[1l];
]
]

= window([2];

= window[3

4

= pixels*fwindow[O0];
= scanlines*fwindow[1];
= pixels*fwindow[2];
= scanlines*fwindow[3];

()
=
«‘D“EI%VIF’%W‘U‘S%N*

if (x <0 || v <0 || (xtw) > pixels || (yt+h) > scanlines) error(err5, x,
y, w, h, pixels, scanlines);

/* Make output handle. */
output = duphandle (input);
output- >ImageWidth = w;
output- >ImagelLength = h;

}

17

6.3 Reading and Writing Scanlines

An example of how to stream image data, taken from the crop module, is shown on the
next page. This module does very simple processing, since it does not need to
understand the data, it only needs to limit its size.

At the beginning of the processdata() procedure, input and output buffers are defined.
These buffers are specially created using the Archie library routine, createscans(). This
routine only needs to know the image data I/O handle and how many scanlines are to be
stored in the buffer. The necessary image information that this procedure needs is
determined from the handle structure.

The data is stored in the buffer as packed pixels. If a pixel has multiple samples, then
the samples for each pixel are stored continuously. Since the only allowed bits/sample
values are 1, 8, 16, 32, and 64, for all but the first, each pixel is an even multiple of bytes.
For the case of 1 bit/sample, the pixels are packed into the scanline ignoring the byte
boundaries. Padding to fill out to a byte boundary is done only at the end of a scanline.
No padding is required for the other cases. The number of bytes in a scanline is
therefore, nbytes = (BitsPerSample*SamplesPerPixel*ImageWidth+7)/8. The first
scanline begins at byte 0 and any subsequent scanlines begin at intervals of nbytes.

sample O sample 1 cen sample O sample 1

. N J
' e

pixel O pixel 1

Back to the crop code fragment, the main processing loop cycles over all of the input
image scanlines, reading one scanline into the input buffer for each iteration of the loop.

Since the task of crop is to pick out a rectangular region of the input image, a check is
made to see if the current scanline is within the window. If it is, then the portion of that
scanline that is horizontally within the window is copied to the output scanline buffer.

At the end of the loop, an output scanline is written for each line that lies within the
window.

A switch statement within the loop is used to treat the scanline data differently depending
on the number of bits within each sample. A special case is necessary for 1 bit/sample.
A temporary buffer is used to unpack the input scanline from packed bits into bytes. The
unpacked bytes can be easily cropped and re-packed into the output scanline.

Since the input and output scanline buffers contain information about the length of the
scanline, they cannot be freed using the standard free() system call, but they require an
Archie library routine, freescans().

18

/* crop.c
*

*/

void processdata()
{
int m, n;
unsigned char *utmpIn, *utmpOut, *temp;
unsigned short *stmpIn, *stmpOut;
unsigned long *ltmpIn, *ltmpOut;
double *dtmpIn, *dtmpOut;

temp = (unsigned char *) malloc(SamplesPerPixel*pixels+7);
utmpIn = (unsigned char *) createscans (input, 1);
utmpOut = (unsigned char *) createscans (output, 1);

for (n=0; n < scanlines; n++)
{
readscans (fdin, input, utmplIn);
if (n >=y && n < (y+h))
{
switch (BitsPerSample)
{
case 1:
unpack (utmpIn, temp, SamplesPerPixel*pixels);
pack (utmpOut, tempt+SamplesPerPixel*x, SamplesPerPixel*w);
break;
case 8:
for (m=0; m < SamplesPerPixel*w; m++) utmpOut [m]
ut npl n[m-Sanpl esPer Pi xel *x] ;

break;

case 1l6:
stmpIn = (unsigned short *) utmpIn;
stmpOut = (unsigned short *) utmpOut;

for (m=0; m < SamplesPerPixel*w; m++) stmpOut[m] =
st mpl n[m+Sanpl esPer Pi xel *x] ;

break;

case 32:
ltmpIn = (unsigned long *) utmpIn;
ltmpOut = (unsigned long *) utmpOut;

for (m=0; m < SamplesPerPixel*w; m++) ltmpOut [m] =
I t mpl n[m-Sanpl esPer Pi xel *x] ;

break;

case 64:
dtmpIn = (double *) utmplIn;
dtmpOut = (double *) utmpOut;

for (m=0; m < SamplesPerPixel*w; m++) dtmpOut[m] =
dt mpl n[m+Sanpl esPer Pi xel *x] ;
break;
}
writescans (fdout, output, utmpOut);
}
}
free(temp);
freescans (utmpIn) ;
freescans (utmpOut) ;

}

19

6.4 Comments

Comments that contain information about the history of the image file can be read,
modified and/or written to the header. These comments are stored as ASCII strings in
specific TIFF tags that are part of the definition of the TIFF 6.0 format.

On the right, is the list of comments that | /* Archie.h
are defined for the Archie 1.0 software *
. *
package. For the Archimedes /
Palimpsest project, these tags are used t0 | _i et COMMENT
store specific information related to the {

manuscript. struct COMMENT *next;
unsigned long tag;
unsigned long length;
char *strings;

DocumentName is set to “Archimedes

Palimpsest”. y
4
ImageDescription records the type of /* Comment names. */

illumination, either tungsten, strobe or #define COMMENT_DocumentName 269
ultraviolet. #define COMMENT_ImageDescription 270
#define COMMENT_Make 271
. #define COMMENT_Model 272
Make and Model describe the camera. #define COMMENT PageName 285
#define COMMENT_Software 305
PageName is the folio number of the #define COMMENT DateTime 306
page imaged in this file. #define COMMENT Artist 315
#define COMMENT_HostComputer 316
#define COMMENT_Copyright 33432

Software is automatically set by the

library routines to “Archie 1.0”.
DateTime is automatically set to the date and time the processing was done.
Atrtist is set to the names of the people who created the image.

HostComputer is where the command line used to process this image is stored. It is
automatically appended to whatever history is already in this tag.

Copyright describes the date and owner of the copyright of the image.

Only the three tags, Software, DateTime and HostComputer are automatically filled in by
the Archie 1.0 software package library routines. All the other comment fields are
modifiable by an individual module.

The descriptions of the specific library calls to modify comments are given in section 7.3.
A brief code example is given on the next page.

20

6.5 Example of Writing Comments

Comments are written using the Archie library routines that specifically deal with
comments. An example code fragment from the append module is shown below.

The append module is interesting in that it has two different input files and it needs to
combine the comment fields of the HostComputer tag from both images to record the
complete processing history of all three images in the output image.

When the input handle is duplicated to make the output handle, the comments of the input
file are copied with it. If nothing is done to modify the comment fields, they will be
carried along and recorded in the output image file.

The procedure getcomment() returns a pointer to the COMMENT structure shown on the
previous page and is used below to get any existing comments stored in the
HostComputer tag from the two input files.

The two HostComputer comments from the two input files are combined together using
the procedure, appendcomments(). The procedure, putcomment(), then is used to replace
any comment of this type in the output handle with the newly combined comment. When
the output handle is subsequently written to the output using puthandle(), these comments
will be recorded in the output file.

/ * append.c

*

*/

void processhandle ()

{
struct COMMENT *commentOut, *commentApp;

/* Make output handle. */
output = duphandle (input) ;
if (direction == LEFT || direction == RIGHT)
output- >ImageWidth = input- >l mageW dt h+append- >l mageW dt h;
else output->Imagelength = input- >l nageLengt h+append- >l nagelLengt h;

/* Combine the processing comments of the two images. */

commentOut = getcomment (output, COMMENT_HostComputer) ;

commentApp = getcomment (append, COMMENT_HostComputer) ;

commentOut = appendcomments (commentOut, commentApp);

if (commentOut != (struct COMMENT *) 0) putcomment (output, commentOut);

}

Only the HostComputer tag is modified in this example. All other comment fields in the
output image will be the same as those in the input image.

21

7.0 Library Routines

This section contains the detailed descriptions of the available Archie 1.0 library routines,
their arguments, how to call them and what they do.

7.1 Handles

struct HANDLE *gethandle(fd)
int fd;

Gethandle() takes as an input, a input file descriptor. This parameter is an INT and is
returned by the open() system call, or it can be O for the standard input pipe.

It returns a pointer to a HANDLE structure, which is defined on page 16. This structure
contains the size of the image and information about the interpretation of the pixel data.
Changes made to this structure will have no effect on the file described by fd.

Gethandle() checks the stated byte order of the input file along with the byte order used
by the computer executing the software and interprets the input data accordingly.

Non-public information is also stored within the handle returned by this routine. This
information includes the comments within the header, the byte order being used, and the
number of bytes in a scanline.

As a consequence of the private information within the handle, only handles created by
the library routines will work with the other routines in the package.

void puthandle(fd, handle)
int fd;
struct HANDLE *handle;

Puthandle() takes two input arguments. The first is a file descriptor of an output image
file, or it can be 1 for the standard output pipe.

The second argument is a handle of the output image. This handle should be created
using one of the following library routines, such as duphandle() or createhandle().
Because handles contain private information, they will not work if they are constructed
by any other means.

Any changes made to the parameters within this output file handle, to reflect the
characteristics of the output image, as shown in the code on page 17, must be made
before puthandle() is called. They will have no effect afterwards.

Puthandle() automatically changes some comment fields in the header. The Software tag
is set to be “Archie 1.0”. The DateTime tag is set to the current date and time. Lastly, a
check is made for the command line to the module and it is appended to any existing
statements in the HostComputer tag.

22

struct HANDLE *duphandle(handle)
struct HANDLE *handle;

Duphandle() will duplicate the input HANDLE structure and return a pointer to the copy.
The routine is used create a handle for a new image file that is very similar to a
previously existing handle.

The routine copies both the public and the private structures associated with the handle.
A separate copy of any comments associated with the input handle will be made and
associated with the copy that is returned.

No changes made to the duplicate handle that is returned will be reflected in anything
associated with the input handle or file. Any changes that are made will affect only the
output file that is being executed together with the handle by puthandle().

struct HANDLE *cr eatehandle(ImageWidth, ImageLength, BitsPerSample,

SamplesPerPixel, PhotometricInterpretation, SoftMatte, SampleFormat,
XResolution, YResolution, ResolutionUnit, ByteOrder, Comments)

long ImageWidth, ImageLength, BitsPerSample, SamplesPerPixel;

long Photometriclnterpretation, SoftMatte, SampleFormat;

double XResolution, Yresolution;

int ResolutionUnit;

char ByteOrder;

struct COMMENT *comments;

Createhandle() will create an image file handle when there are no existing handles to
copy. All of the arguments listed above are required and must be of the appropriate type.

PhotometricInterpretation has one of two values from Archie.h, either PhotometricGray
or PhotometricRGB.

SoftMatte has the value O or 1, indicating if a soft matte exists in the image.

SampleFormat has one of four values from Archie.h, either Unsigned Integer,
SignedInteger, FloatingPoint, or Undefined.

ResolutionUnit is 2 for inches.
ByteOrder is ‘I’ for Intel (little endian) or ‘M’ for Motorola (big endian).

Comments is a pointer to a queue of comment structures. The first element of each
comment structure points to the next. The last structure on the list has a zero “next”
pointer.

23

7.2 Scanlines

unsigned char *createscans(handle, nscans)
struct HANDLE *handle;
int nscans;

Createscans() returns a pointer to a buffer that can hold nscans scanlines of an image
described by handle. This buffer is passed as an argument to readscans() and
writescans().

The pointer returned by createscans() is the beginning of the pixel data for the first
scanline in the buffer. If there are additional scanlines in the buffer, then they are located
at intervals of nbytes = (BitsPerSample*SamplesPerPixel*ImageWidth+7)/8.

The buffer created by this routine cannot be freed using the free() system call, see below.

void readscans(fd, handle, buffer)
int fd;
struct HANDLE *handle;
unsigned char *buffer;

Readscans() reads scanlines from fd in buffer. The number of scanlines the buffer can
hold was specified when it was created by createscans(). Every time readscans() is
called, a new set of scanlines is stored in buffer, overwriting whatever was in the buffer
previously.

void writescans(fd, handle, buffer)
int fd;
struct HANDLE *handle;
unsigned char *buffer;

Readscans() writes the scanlines to fd that are contained in buffer. The number of
scanlines written from the buffer was specified when it was created by createscans().
Calling writescans() does not change the image data contained with buffer.

void freescans(buffer)
unsigned char *buffer;

Freescans() frees the space used by the buffer that was allocated by createscans().

24

7.3 Comments

struct COMMENT *getcomment(handle, tag)
struct HANDLE *handle;
unsigned long tag;

Getcomment() has two arguments, an input handle and the TIFF tag identified with the
desired comment. The available TIFF tag identifiers are defined in Archie.h and are
shown on page 20. The pointer that is returned, points to a COMMENT structure, also
defined in Archie.h and shown on page 20.

This return value is a pointer to the actual comment within the specified handle. It is not
a copy of the comment. If anything is changed within this COMMENT structure, it will
be reflected in a change in the comments associated with the input handle.

A null pointer is returned if no comment identified with this tag is present in the handle.

struct COMMENT *createcomment(tag, length, string)
unsigned long tag, length;
char *string;

Createcomment() has three arguments, a TIFF tag identifier, the length of the string, and
the desired string to be associated with this comment. The routine allocates the space
needed to create the COMMENT structure and returns a pointer to that structure. The
“next” parameter will be set to zero.

The length is the number of bytes that it takes to hold the string, including a terminating
zero byte.

The string may be a single string, terminated with a zero byte, or it may be a set of
concatenated strings. The TIFF 6.0 format allows a string to consist of several zero-byte
terminated strings placed one after the other. The length parameter includes all of the
bytes to be included in the complete set of strings.

struct COMMENT *appendstring(comment, string)
struct COMMENT *comment;
char *string;

Appendstring() will append the zero-byte terminated string to the end of the string
associated with the input comment. The length parameter within the comment is adjusted
accordingly. New space is allocated to hold the new string and the old space is freed. If
the comment or the string is zero, then the routine does nothing.

25

struct COMMENT *appendscomments(comment], comment?2)
struct COMMENT *commentl, comment?2;

Appendcomments() will append comments together. The two input comments are left
alone, and a new comment is created that contains the string of comment2 appended to
the string of commentl. If either comment is zero, then a copy of the other comment is
returned.

void putcomment(handle, comment)
struct HANDLE *handle;
struct COMMENT *comment;

Putcomment() searches the structure in handle looking for a comment of the same type as
comment. If it finds one, then it replaces the old comment with the new comment.

void commandcomment(arge, argv)
int argc;
char **argv;

Commandcomment() extracts the command line arguments from the argument strings that
were passed to main(). The extracted string containing the command line is placed in a
global variable that is checked by puthandle(). If puthandlg() finds a command line, it
will append it to the HostComputer tag in the handle.

This routine should be called before writing out the output handle to ensure that the
command line is added to the image processing history that is stored in the header of the
image file.

7.4 Errors

void error(errormsg, arg0, argl, ..., arg9)
char *errormsg;
int arg0, argl, ..., arg9;

Error() will print the errormsg using fprintf to stderr, along with up to 10 arguments
containing additional values, then it stops execution by calling exit(1).

26

7.5 Pack and Unpack

void pack(bits, bytes, length)
unsigned char *bits, *bytes;
int length;

pack() will convert a scanline of unsigned chars that are 1 bit/sample, in bits, to a scanline
of unsigned chars that are 8 bits/sample, in the array bytes. The third argument, length, is
the number of samples, whether packed or unpacked.

void unpack(bits, bytes, length)
unsigned char *bits, *bytes;
int length;

unpack() will convert a scanline of unsigned chars that are 8 bits/sample, in the array
bytes, to a scanline of unsigned chars that are 1 bit/sample, in the array bits. The third
argument, length, is the number of samples, whether packed or unpacked.

27

